
MyTISM - Ein Datenbank- und
Anwendungs-Framework

Inhaltsverzeichnis
MyTISM: Das 3-Tier-Framework für Ihre Anwendung . 2

Vorstellung von MyTISM . 3

Was ist MyTISM? . 4

Warum MyTISM? . 5

Historie . 6

Zukunft? . 9

Schema . 10

Funktionsweise. 11

Vorteile . 12

Schema-Definition . 13

Attribute. 13

Unter-Elemente des Schema-Elements. 13

Include . 14

Folder . 14

ModuleProvider . 15

ModuleIntegrator . 15

Module . 15

Generator . 15

Type . 16

Interface. 16

GDPR* . 16

GDPRDataCategory . 16

GDPRBusinessInterest . 16

GDPRProcessingPurpose . 17

GDPRProcessingLegalBasis. 17

GDPRLaw . 17

GDPRRetentionPurpose . 17

Entity . 18

Unter-Element "gdpr" von Entity . 19

Unter-Element "ui" von Entity . 19

Unter-Element "lookup" von Entity . 21

Unter-Element "code" von Entity . 22

Unter-Element "db" von Entity . 23

Unter-Element "report" von Entity . 24

Unter-Element "export" von Entity. 24

Beispiel für eine Entity-Definition . 25

Attribut . 25

Vordefinierte Datentypen für Attribute . 34

Timespan . 34

Duration. 34

Schemapflege / Datenbankupdates . 35

Liste der durch den UpdateHandler zur Verfügung gestellten Hilfsmethoden 35

Coredata-Generator . 36

Zusätzliche, vorgebaute Strukturelemente . 36

Der Array Datentyp . 38

Vordefinierte Arrays von Skalaren . 39

Verwendung als Attributtyp . 40

Definition von neuen Arraytypen . 41

Limitiere die Komponenten . 41

Parameter . 41

Vererbung . 42

Tabellenansicht in der GUI . 43

Das "AsRelation" Postfix von Array Attributen . 43

Die virtuelle Entität als virtueller Namensraum . 44

Zeilen um virtuelle Properties anreichern . 45

Selbstdefinierte Tabellenansicht in der GUI . 46

Ansicht in Automatikformularen als String . 48

ArrayZeilenDelegate / Wrapper . 49

Verwendung in OQL Queries . 50

Umgang mit Arrays im Code . 51

Persistente Array Attribute . 52

Verfügbare Methoden . 52

Hinweise . 52

Hinweise bei v-attrs: . 53

Persistenzschicht von MyTISM . 54

Löschen von Daten in MyTISM. 55

Soft Delete . 55

Wiederherstellung von "Soft Deleted" Objekten . 55

Hard Delete (Purge). 55

Unterschiede zwischen Soft und Hard Delete im Überblick. 56

Zusammenfassung . 56

Sprachunterstützung und Internationalisierung . 57

Einführung . 58

Wo wird Mehrsprachigkeit unterstützt und wie benutze ich sie? . 58

Wie wird die konkrete Zeichenkette für einen Schlüssel gefunden? . 58

Welche L10nPacks gibt es und wie sind diese organisiert? Wie wird bestimmt, welche

L10nPacks nach Texten durchsucht werden?

 59

Web . 59

Welches sind die "beteiligten bzw. relevanten Objekte"? . 59

Wo kommen die (Daten der) L10nPacks her? . 60

L10n und das Anführungszeichen bzw. Apostroph . 61

Wichtige Klassen . 62

Eingabe von L10n-Daten . 63

Die Formularengine des Solstice Clients. 64

de.ipcon.form . 65

Hintergrund . 65

Das Formular-Objekt . 65

Eigenschaften. 65

Auswahl. 66

Definition . 66

Fehler und Ursachen. 67

Compiler-Meldung "Object cannot be null". 67

bi-Tabelle kann nicht erstellt werden (nachdem die Datenbank gedropped und recreated

wurde)

 67

Compiler-Meldung "Object bla is null but shouldn’t" (sic) . 67

Synchronisation der Strukturelemente . 68

Das Formular "DateiSystemSync" . 69

Volltextsuche . 70

Konfiguration im Schema . 71

Berücksichtigte Daten. 71

Berücksichtigte Entitäten . 71

Berücksichtigte Attribute . 71

Weitere Einstellungen im Schema . 72

analyzed . 72

boost . 73

Formularelemente . 74

Action . 75

availableOn. 76

enabledOn . 76

initialState . 76

longDescription . 76

onAction. 77

BooleanInputComponent . 78

Border . 79

Button . 83

Canvas. 85

Chart . 86

onClick . 89

CheckBox . 91

ComboBox . 93

DateChooser . 95

Editor . 97

Element. 98

Email . 101

Image . 104

Label . 105

Format . 108

Text . 108

onClick . 109

FPanel (abstrakt) . 110

Skriptvariablen . 110

onAfterSelectValue . 111

editableIf . 111

visibleIf . 111

OnDrop. 112

onFocusGained . 112

onFocusLost . 113

onRefresh . 113

onSync . 113

FInputPanel (abstrakt) . 114

alsoMandatoryIf . 114

PDFViewer. 115

Popup . 117

Scheduler . 123

SimpleTimespanChooser . 133

Tab. 134

TabbedView . 137

Table . 140

Column. 146

headerRenderer und renderer . 149

DetailView. 149

MultipleChoiceFilterGUI . 151

Text . 152

StyledText . 154

TimeSelector . 155

ToggleButton . 156

Tree . 159

Uri . 160

View . 161

Datenaustausch . 164

Import. 165

Export . 166

Excel . 166

Lokale autoritative sowie synchronisierende Instanzen zum Entwickeln aufsetzen 167

MyTISM ist ein leistungsstarkes Framework zur Entwicklung und Verwaltung
von Datenbankanwendungen. Es ist plattformunabhängig, objektorientiert,
dezentral, multiuserfähig, individuell anpassbar und quelloffen. Mit MyTISM
erstellen Sie effizient komplexe Anwendungen, dank einer umfassenden
Sammlung von Tools und Funktionen, inklusive GUI und Web-Application-
Server. MyTISM wird entwickelt und betreut von der OAshi S.à r.l.

Diese Dokumentation richtet sich an Entwickler und interessierte Anwender, die tief in die Interna
und den Aufbau von MyTISM eintauchen möchten.

Voraussetzungen: Um diese Dokumentation optimal nutzen zu können, sollten Sie über gute bis
sehr gute Kenntnisse in folgenden Bereichen verfügen:

• Java

• Groovy

• NetRexx

• Relationale und objektorientierte Datenbanken

Idealerweise haben Sie bereits erste Erfahrungen mit der Bedienung von MyTISM gesammelt.


Diese Dokumentation befindet sich noch im Aufbau. Wir arbeiten kontinuierlich
an der Vervollständigung und Verbesserung der Inhalte.

Bei Fragen, Problemen oder Anregungen zu MyTISM oder dieser Dokumentation kontaktieren Sie
uns gerne über https://www.mytism.de/#contact.

1

https://www.oashi.com
https://www.mytism.de/#contact

MyTISM: Das 3-Tier-Framework für
Ihre Anwendung
MyTISM ist ein robustes und flexibles 3-Tier-Framework, das die Entwicklung skalierbarer und
wartbarer Anwendungen deutlich vereinfacht. Durch die strikte Trennung von Präsentation,
Anwendungslogik und Datenhaltung ermöglicht MyTISM effiziente Entwicklungsprozesse und
bietet maximale Flexibilität bei der Anpassung an zukünftige Anforderungen.

Die drei Schichten in MyTISM:

1. Präsentationsschicht (Frontend): MyTISM stellt Ihnen Werkzeuge und Komponenten zur
Verfügung, um Benutzeroberflächen nach Ihren Bedürfnissen zu gestalten.

2. Anwendungsschicht (Middleware): In der MyTISM Middleware implementieren Sie die
Geschäftslogik Ihrer Anwendung, verarbeiten Daten und greifen auf die Datenbank zu.

3. Datenbankschicht (Backend): MyTISM abstrahiert und vereinfacht den Zugriff auf die
Datenbank durch die integrierte Object Query Language (OQL). OQL ermöglicht einen
objektorientierten, einfachen und performanten Zugriff auf die zugrundeliegende relationale
Datenbank.

Die 3-Tier-Architektur sorgt für eine übersichtliche und leicht verständliche Codebasis.
Änderungen an einer Schicht haben minimale Auswirkungen auf die anderen Schichten. Diese
Modularität erleichtert die Wartung und Aktualisierung der Anwendung und erhöht ihre
Skalierbarkeit.

MyTISM bietet Ihnen ein solides Fundament für die Entwicklung Ihrer Anwendung. Durch die
konsequente Anwendung des 3-Tier-Modells profitieren Sie von einer strukturierten, flexiblen und
zukunftssicheren Architektur.

2

Vorstellung von MyTISM

3

Was ist MyTISM?
MyTISM ist ein Java-basiertes Anwendungsframework mit integrierter Datenbankunterstützung. Es
besteht aus einem oder mehreren miteinander verbundenen Servern (inkl. PostgreSQL-Datenbank)
und Clients, die über das Netzwerk darauf zugreifen. Der Hauptclient, Solstice, bietet eine grafische
Benutzeroberfläche mit umfangreichen Konfigurationsmöglichkeiten.

MyTISM ermöglicht die Entwicklung von Webanwendungen, die auf das MyTISM-System zugreifen,
und bietet Funktionen zur Erstellung von Berichten, zur Verwaltung von Benutzerrechten, zur
Versendung von Benachrichtigungen, zur Reaktion auf Ereignisse mittels seines Alarmsystems und
zur Automatisierung von Aufgaben via eigener Dienste.

MyTISM entstand aus der Vision, ein Framework zu schaffen, das die Lücken bestehender
Lösungen schließt und eine wirklich integrierte und effiziente Entwicklungsumgebung bietet.
MyTISM wurde aus der Notwendigkeit heraus geboren, komplexe Datenbankanwendungen zu
vereinfachen und zu beschleunigen. Es ist das Ergebnis jahrzehntelanger Erfahrung und
Entwicklung und bietet eine einzigartige Kombination von Funktionen und Flexibilität.

4

Warum MyTISM?
Eine gute Frage. Warum tut man sich heutzutage noch den Aufwand an, ein Datenbank-Framework
und all das Drumherum bis zum Applikationsserver von Grund auf neu zu entwickeln, wenn es die
entsprechenden Werkzeuge am Markt doch in Hülle und Fülle bereits gibt? Oder ist es nur der
Wunsch eines jeden Programmierers, "sein" Framework zu bauen und zu verwenden?

Die Wahrheit ist: Als ich mir auf der Suche nach den passenden Puzzleteilen die verschiedenen
Frameworks angeschaut habe (wohlgemerkt Stand Mitte 2001) musste ich feststellen, daß es zwar
immer wieder gute Teile gab, aber nichts, was zusammengepaßt hätte. Osage, XwingML,
verschiedene Wrapper für native GUIs, RAD-Tools zum Erstellen von Swing-Code etc; ganz zu
schweigen von Standards wie J2EE mit ihren CMP, BMP und weiß Gott was sonst noch so alles. Aber
es paßte einfach nicht wirklich ins Bild. Immer, wenn ich einen Prototypen zusammensetzte, blieb
ich entweder an einer Lizenz-Ecke hängen oder es hakte einfach technisch an der Möglichkeit der
Umsetzung.

Noch lange nicht am Ende dieses Weges angelangt, kann ich nach inzwischen drei Jahren
Entwicklung (diese Zeilen entstanden im September 2004) sagen, daß es, und das ist das schönste
Lob von allen, immer wieder Programmierer gibt, die einen Blick auf das entstandene Werk werfen
und feststellen, daß es sich substantiell von allem unterscheidet, was sie bislang gesehen haben.
Das kann natürlich auch an der Unwissenheit oder Unerfahrenheit dieser Programmierer liegen,
aber trotzdem interpretiere ich es als ein großes Kompliment für unsere Firma und auch
persönlich für mich.

5

Historie
Den Anfang nahm alles im August 2000 (das Wochenende vom 26.-27., um genau zu sein), als ich
anfing, ein neues Projekt für einen Industriekunden zu durchdenken, und mir, nachdem ich schon
monatelang um OODBMSe mit einem befreundeten Programmierer diskutiert hatte, der
Paradigmenbruch eines Java-Programmierers, der Datenbankanwendungen schreibt, wirklich
bewußt wurde.

Irgendwie ist es fast wie Autofahren: Am Anfang freut man sich, daß man das Vehikel wenigstens
schadfrei über die Straßen bewegen kann und freut sich, heil anzukommen. Doch je mehr Routine
man erlangt, umso mehr fallen Unzulänglichkeiten wie schlechtes Fahrwerk, Sitze,
leistungsschwache Motoren oder auch einfach das unbehende und unvorausschauende Treiben
anderer Verkehrsteilnehmer auf - nicht, daß sie vorher nicht dagewesen sind, man war
möglicherweise sogar ein Teil davon. Aber mit der Routine kommt auch der Drang, besser zu
werden, die Prozesse zu optimieren, schneller voran zu kommen, die Resourcen sinnvoller zu
nutzen.

So ist man am Anfang froh, überhaupt aus einer DBMS irgendwie Daten zu bekommen, bestaunte
jede abgesetzte Query und war froh, die Daten an Ort und Stelle irgendwie laden und wieder
zurückspeichern zu können. Auch war es anfangs keine Mühe, sondern eher fast magisch, an dem
Schema der SQL-Datenbank herumzuschrauben und Trigger zu setzen, kleine SQL-Scripts zu
schreiben etc. Alles war ein großer Spaß und ich war stolz, eine SQL-Datenbank "zu beherrschen".
Wie naiv man doch manchmal ist…

Aber mit der Routine kam auch die Redundanz. Schon wieder eine Tabelle ändern, die Query
erweitern um eine Spalte, ein bißchen Javacode anpassen, in der GUI das Feld dazubauen, den
Serializer erweitern und so weiter. Alles Jobs, um die man sich als Programmierer nicht gerade
reißt. Zumindest ich reiße mich nicht darum. Dazu kam, daß man ständig das Verhalten der
Anwendung teilweise in der Datenbank, teilweise in der Persistenz und zu guter Letzt auch noch in
der GUI bestimmte. Wo wurde nochmal diese zehnstellige Zahl abgefragt? Welche Klasse prüft die
Artikelnummer? Die Arbeit mit Datenbankanwendungen wurde schnell zu einer leidigen
Pflichtübung und hatte mit Design nur noch wenig zu tun. Ich drückte mich um jedes geänderte
Feld, um jede veränderte Definition, weil sie sich mehr oder weniger durch den gesamten Code zog
und nach jedem weiteren Programmteil noch aufwändiger wurde. Mal abgesehen davon, daß der
Wechsel der SQL-Servers ein reiner Albtraum gewesen wäre, aber dazu kam es Gott sei Dank nie.

Die erste Verbesserung kam dann in jenem August 2000, als ich konkret daran ging, die Anwendung
dieses Kunden zu entwerfen und nach einigen Tests mit Osage und anderen ORM’s, deren Namen
ich heute nicht mehr weiß, einen Test mit der Castor-API machte. Dieser Test wurde dann schnell
zum Prototypen und bald hatte ich ein Problem weniger: Der Persistenz-Code war jetzt an einer
Stelle zu finden und viele Aspekte der Business-Logik waren nun in Objekten, die persistiert
wurden, gekapselt. Außerdem konnte man mit einem Subset vom OQL Abfragen aus
objektorientierter Sicht erstellen, die die API in SQL-Queries abhängig vom verwendeten SQL-
Server verwandelte. Sie schirmte einen sozusagen vom SQL-Code völlig ab - eine völlig
faszinierende Sache aus Sicht des Programmierers.

Leider war der Castor noch nicht fertig (er ist es heute noch nicht), und seine Unzulänglichkeiten
zwangen mich zeitweise wochenlang in die Fehlersuche und haben mich wahrscheinlich um Jahre

6

altern lassen. Aber er ließ Dinge geschehen, die für mich magisch waren und deren Mechanismen
ich im Detail erst viel später verstand. Das einzige, an dem ich immer noch basteln musste, waren
die Mapping-Files, die eigentlichen BO-Klassen und die Datenbank an sich. Wenn diese drei
ordentlich synchron gepflegt wurden, lief alles reibungslos. Wenn nicht, dann…

Dieses erste Projekt mit einem ORM war ein voller Erfolg; es lief vom ersten Tag fast störungsfrei
und bewältigte eine Aufgabe, die recht komplex viele Datenströme zur rechten Zeit zum richtigen
Ort schaffen musste und als Schalt- und Regelzentrale eine anspruchsvolle und
verantwortungsvolle Stellung in der Firma hatte. Einige der Probleme, die vorher bestanden und
die durch eine vorherige Lösung bereits längst erledigt sein sollten, wurden nun endlich erledigt.
Einige Folgeaufträge stand das nächste neue Projekt an, ein Vertriebssystem.

Ein altes chinesisches Sprichwort sagt: Für einen Mann mit einem Hammer sieht alles wie ein
Nagel aus. Wie wahr. Da hatten wir nun dieses Projekt mit dem Castor ORM und einen Kunden,
dessen zugegeben etwas hoch gesteckte Ziel so nicht kauffertig zu erwerben war. Was lag näher, als
auch ihm eine individuelle Lösung zu bauen - 60% davon sind ja schon fertig. Nun, zumindest
schien das so, und nach einer kurzen Preisverhandlung sollte 3-4 Monate später das Programm
fertig sein. Das war im März 2001. Im August 2001 hatte ich eine eher wackelige Fassade dessen,
was der Kunde eigentlich wollte (wobei die Frage im Raum steht, welcher Kunde schon am Anfang
eines solchen Projekts weiß, was er wirklich will). Synchronisation war noch in weiter Ferne, das
Transportprotokoll RMI und die Geschwindigkeit insgesamt lausig. Aber mit wenigen Testdaten
blieb alles im RAM und so fiel es nicht weiter auf, daß das eigentliche Produkt, so wie ich es im Kopf
hatte, noch viel Arbeit kosten würde.

So wurde zunächst die Formularengine grob zusammengestoppelt und die damals recht junge
JNLP-Spezifikation zur Installation der Clients fertiggestellt. Eine erste Version des Schema-
Generators erlaubte im Compile-Zyklus eine Anpassung der Datenbank, generierte Sourcecode und
erstellte statische Mapping-Files für den späteren Server-Start. Das Projektverzeichnis war ein
einziger Wust von kleinen Dateien, in denen kleine Informationsbröckchen lagen, die Auskunft
über die Konfiguration einzelner Teile der Software gab. Ein Apache auf der gleichen Maschine
lieferte eine kleine Website mit den JNLP-Deskriptoren samt jars aus. Somit war ein zumindest
installationsfähiger Client samt Server zusammengestellt, der die anfänglichen Anforderungen des
Kunden, der langsam aber sicher auch etwas ungeduldig wurde, bediente (November 2001).

Zur gleichen Zeit hatte ich einen Kunden, der ein altes PHP-Framework von uns um
Mehrsprachigkeit und Skins erweitern wollte. Mir war klar, daß in diesem Code-Moloch eigentlich
ein Neubau die einzige mögliche Strategie der Weiterentwicklung lag. Aber warum jetzt ein PHP-
Framework bauen, wenn gerade ein Java-ORM Framework entstand? Die Idee zu Equinox entstand
und wurde von mir bereits im Oktober 2001 gegenüber diesem Kunden über den grünen Klee
gelobt. Eigentlich hatte dieser Programmteil als erster seinen Namen; dieser Kunde brauchte einen
Namen für ein Produkt, also nannte Thorsten es Equinox.

Die Formularengine bekam alsbald eine Script-Schnittstelle, der Schema-Generator wurde zerteilt
und erzeugte im Compile-Stage nur noch den Quellcode der persistenten Klassen und der Server
brauchte für die Initialisierung nur noch eine ini und die Log-Konfiguration. Daran hat sich bis
heute auch nicht mehr viel verändert, wenngleich der Inhalt der ini inzwischen leicht gewachsen
ist. Außerdem entstand in den Weihnachstagen eine erste Version des
Synchronisationsmechanismus, der auf Basis der Zeitstempel an den Objekten funktionierte, der
sogenannte Statesync. Er funktionierte mit einer nicht allzu großen Menge an Objekten gemessen

7

an der Komplexität erstaunlich gut. Aber er tat dies weder vollständig noch in einer annehmbaren
Geschwindigkeit. Ich hatte die Geschwindigkeit des Gesamtsystems einfach grob überschätzt.
Außerdem brauchte er Unmengen an RAM. Eine Alternative musste her, und die war nur im
Logsync zu finden - diese Variante ist heute die einzig Mögliche in MyTISM.

Im Lauf der ersten Monate von 2002, inzwischen arbeiteten drei Programmierer aktiv an der
Entwicklung von MyTISM, wie es inzwischen hieß, wurden das Logging verfeinert. Erst jetzt wurde
der Float-Datentyp in MyTISM eingebaut. Die Formularengine konnte inzwischen Scripts nach allen
Regeln der Kunst, ein BX-Objekt (eine nicht persistente Entität, die jedoch per Schema zugreifbar
und damit funktionell identisch mit anderen BOs) wurde eingeführt. Ende April gab es eine erste
Version der GUI des Hotelvermittlers, der zweite Kunde für MyTISM überhaupt. Anfang Mai
wurden dann die ersten wirklich lauffähigen Versionen von Equinox gesichtet; der Equinox-Kunde
wollte Juni 2002 live gehen mit der neuen Website, aber leider hatte er durch viele Updates an seine
alten Site derartig Resourcen gebunden, daß es uns nicht möglich war, mit der nötigen Intensität an
Equinox weiterzubauen. Außerdem waren der Designer und der ERP-Supplier nicht unbedingt
unseren Anforderungen gewachsen, so daß wir viele Arbeiten, die eigentlich nicht unser Job
waren, mit erledigen mussten. Aber alles in allem ging die Entwicklung von Equinox voran, und die
ersten Seiten krabbelten aus dem Web, frisch aus MyTISM, in XML gewandelt, per XSLT
transformiert und dann ausgegeben…

Die Logschreiberei war im April soweit beendet, daß ein weiterer Mechanismus gebaut werden
konnte: der Export-Handler, der auf Basis der Logs Daten an Fremdsysteme ausliefern konnte - per
Timetravel sogar mit echten "Snapshots" der Daten zum jeweiligen Zeitpunkt.

8

Zukunft?
MyTISM hat sich seit seiner Entstehung zu einem robusten und flexiblen Framework entwickelt,
das sich in verschiedenen Anwendungsbereichen bewährt hat. Die Zukunft von MyTISM sieht
vielversprechend aus und bietet spannende Möglichkeiten für weitere Innovationen und
Verbesserungen.

To be continued…

9

Schema
Das Schema ist das Herzstück jeder MyTISM-Anwendung. Es definiert die Struktur der
Datenobjekte und bildet die Grundlage für die gesamte Anwendungslogik.

10

Funktionsweise
• Datenmodellierung: Im Schema definieren Sie die Entitäten (z. B. Kunde, Produkt, Auftrag)

und deren Attribute (z. B. Name, Preis, Datum) sowie die Beziehungen zwischen den Entitäten.

• Codegenerierung: MyTISM generiert automatisch den Java-Quellcode für die benötigten
Klassen basierend auf Ihrem Schema.

• Datenbankintegration: Die Datenbanktabellen werden anhand des Schemas angelegt und
verwaltet.

• UI-Generierung: Für Solstice (die MyTISM-GUI) werden automatisch Formulare, Schablonen
und Lesezeichen generiert, die auf dem Schema basieren.

11

Vorteile
• Effizienz: Schnelle und einfache Datenmodellierung ohne manuelle Codeerstellung.

• Konsistenz: Das Schema stellt sicher, dass Datenstruktur und Anwendungslogik synchron
bleiben.

• Flexibilität: Änderungen am Schema werden automatisch in Code, Datenbank und UI
übernommen.

Die Schema-Definition erfolgt in der deklarativen Sprache XML. Eine detaillierte Beschreibung der
Syntax und der verfügbaren Elemente finden Sie im folgenden Kapitel "Schema-Definition".

12

Schema-Definition
Das <Schema>-Element definiert das Schema für Ihr MyTISM-System. Es enthält alle Informationen
über die Entitäten, Attribute, Beziehungen und andere Elemente, die Ihr Datenmodell ausmachen.

Einleitender Tag: <Schema BEFEHLE>

Schliessender Tag: </Schema>

Attribute

Attribut Beschreibung Beispiel

version Gibt die Version des Schemas
an. Enthält Platzhalter wie
@BUILT@ (wird beim Kompilieren
durch die Versionsnummer
ersetzt) und @ProjectName@.

<Schema version="@ProjectName@
Schema built @BUILT@">

defaultPackage Definiert das Basis-Package für
Entitäten und Attribute.
Ermöglicht die Vermeidung von
redundanten Package-Angaben
bei extends und type Befehlen.

<Schema version="@ProjectName@
Schema built @BUILT@"
defaultPackage="@BOPACK@">

defaultFolder Definiert den Standardordner
im Navigationsbaum für die im
Schema definierten Entitäten.

<Schema version="@ProjectName@
Schema built @BUILT@"
defaultPackage="@BOPACK@"
defaultFolder="Stammdaten/Kont
en">

Unter-Elemente des Schema-Elements
Das <Schema>-Element kann die folgenden Unter-Elemente enthalten:

• Entity: Definiert eine Entität, die ein Datenobjekt innerhalb des MyTISM-Systems repräsentiert
(z. B. Kunde, Produkt, Auftrag).

◦ Entitäten besitzen Attribute und können Beziehungen zu anderen Entitäten haben.

• Include: Ermöglicht das Einbinden externer Schema-Definitionen aus anderen Dateien, um das
Schema modular zu organisieren.

• ModuleProvider: Definiert einen Anbieter für Module, die zusätzliche Funktionen oder
Erweiterungen für MyTISM bereitstellen.

• ModuleIntegrator: Definiert einen Integrator für Module, der die Integration von Modulen in das
MyTISM-System übernimmt.

• Module: Definiert ein spezifisches Modul, das im MyTISM-System verwendet werden soll.

◦ Module werden von ModuleProvidern bereitgestellt.

• Generator: Definiert einen Generator, der Code, Datenbankstrukturen oder andere Artefakte

13

basierend auf dem Schema generiert.

• Folder: Definiert einen Ordner im Navigationsbaum der MyTISM-Benutzeroberfläche, um
Entitäten und andere Elemente zu organisieren.

• Type: Definiert einen benutzerdefinierten Datentyp, der in Attributen verwendet werden kann.

• Interface: Definiert ein Interface, das von Entitäten implementiert werden kann.

• GDPR*: Definiert GDPR-relevante Elemente, die Informationen zur Einhaltung der Datenschutz-
Grundverordnung (DSGVO) enthalten.

◦ GDPRDataCategory: Definiert eine Kategorie von personenbezogenen Daten (z. B.
Vertragsdaten, Gesundheitsdaten).

◦ GDPRBusinessInterest: Definiert ein berechtigtes Interesse des Unternehmens an der
Verarbeitung personenbezogener Daten.

◦ GDPRProcessingPurpose: Definiert den Zweck der Verarbeitung personenbezogener Daten (z.
B. Vertragserfüllung, Werbung).

◦ GDPRProcessingLegalBasis: Definiert die Rechtsgrundlage für die Verarbeitung
personenbezogener Daten (z. B. Einwilligung, Vertragserfüllung).

◦ GDPRLaw: Definiert ein relevantes Gesetz im Zusammenhang mit der DSGVO (z. B. Artikel 6
DSGVO).

◦ GDPRRetentionPurpose: Definiert den Zweck der Aufbewahrung personenbezogener Daten.

Include
Mit dem <Include>-Element können Sie, ähnlich wie in Programmiersprachen, eine bestehende
Schema-Definition aus einer anderen Datei einbinden. Dies ermöglicht die modulare Organisation
des Schemas.

Tag: <Include BEFEHLE />

Attribut Beschreibung Beispiel

file Name der einzubindenden
Datei.

<Include
file="/de/ipcon/schema/schema-
core.xml">

child Gibt an, ob das eingebundene
Schema ein Kindschema ist.

<Include
file="/de/ipcon/schema/schema-
core.xml" child="true">

Folder
Legt einen Ordner im Navigationsbaum an, in dem die automatisch generierten Formulare und
anderen Strukturelemente für die nachfolgend definierten Entitäten einsortiert werden.

Tag: <Folder Foldername />

14

Attribut Beschreibung Beispiel

path Name des Ordners. <Folder path="Quertabellen">

ModuleProvider
Definiert einen ModuleProvider.

Attribut Beschreibung Beispiel

name Name des ModuleProviders. <ModuleProvider name="oashi"
path="/com/oashi"/>

path Pfad des ModuleProviders. <ModuleProvider name="oashi"
path="/com/oashi"/>

ModuleIntegrator
Definiert einen ModuleIntegrator.

Attribut Beschreibung Beispiel

class Name der Klasse. <ModuleIntegrator
class="de.ipcon.schema.ModuleI
ntegrator"/>

Module
Definiert ein Modul.

Attribut Beschreibung Beispiel

name Name des Moduls. <Module name="core"
provider="oashi">

provider Name des ModuleProviders. <Module name="core"
provider="oashi"/>

Generator
Definiert einen Generator.

Attribut Beschreibung Beispiel

class Name der Klasse. <Generator
class="de.ipcon.schema.generat
ors.PersistenceCode"/>

scope Scope des Generators. Alle
Werte außer "local" werden als
globaler Scope interpretiert.

<Generator
class="de.ipcon.schema.generat
ors.PersistenceCode"
scope="global"/>

15

Type
Definiert einen benutzerdefinierten Datentyp.

Attribut Beschreibung Beispiel

name Name des Typs. <Type name="Prozent"
class="java.math.BigDecimal"
extends="Decimal"/>

class Name der Klasse. <Type name="Prozent"
class="java.math.BigDecimal"
extends="Decimal"/>

extends Basistyp. <Type name="Prozent"
class="java.math.BigDecimal"
extends="Decimal"/>

Interface
Definiert ein Interface.

Attribut Beschreibung Beispiel

name Name des Interfaces. <Interface
name="GDPRRelevantI"/>

GDPR*
Definiert GDPR-relevante Elemente.

GDPRDataCategory

Definiert eine GDPR-Datenkategorie.

Attribut Beschreibung Beispiel

id ID der Datenkategorie. <GDPRDataCategory
id="ContractData">

title Titel der Datenkategorie
(optional).

<GDPRDataCategory
id="ContractData"
title="Contract Data">

GDPRBusinessInterest

Definiert ein GDPR-Geschäftsinteresse.

Attribut Beschreibung Beispiel

id ID des Geschäftsinteresses. <GDPRBusinessInterest
id="LegalCompliance">

16

GDPRProcessingPurpose

Definiert einen GDPR-Verarbeitungszweck.

Attribut Beschreibung Beispiel

id ID des Verarbeitungszwecks. <GDPRProcessingPurpose
id="ContractualPerformance">

GDPRProcessingLegalBasis

Definiert eine GDPR-Rechtsgrundlage.

Attribut Beschreibung Beispiel

id ID der Rechtsgrundlage. <GDPRProcessingLegalBasis
id="Consent">

GDPRLaw

Definiert ein GDPR-Gesetz.

Attribut Beschreibung Beispiel

id ID des Gesetzes. <GDPRLaw
id="gdpr_art_6_para_1_lit_b"
paragraph="Art. 6 para. 1 lit.
b GDPR">

paragraph Paragraph des Gesetzes (z. B.
"Art. 6 para. 1 lit. b GDPR").

<GDPRLaw
id="gdpr_art_6_para_1_lit_b"
paragraph="Art. 6 para. 1 lit.
b GDPR">

country ISO-Code des Landes. <GDPRLaw
id="gdpr_art_6_para_1_lit_b"
paragraph="Art. 6 para. 1 lit.
b GDPR" country="DE">

url URL zum Gesetzestext
(optional).

<GDPRLaw
id="gdpr_art_6_para_1_lit_b"
paragraph="Art. 6 para. 1 lit.
b GDPR" country="DE"
url="https://www.gesetze-im-
internet.de/dsgvo_2016/art_6.h
tml">

GDPRRetentionPurpose

Definiert einen GDPR-Aufbewahrungszweck.

Attribut Beschreibung Beispiel

id ID des Aufbewahrungszwecks. <GDPRRetentionPurpose
id="LegalCompliance">

17

Entity
Eine Entity repräsentiert ein Datenobjekt innerhalb Ihres MyTISM-Systems, z. B. einen Kunden, ein
Produkt oder einen Auftrag. Im Schema definieren Sie die Struktur einer Entity, indem Sie ihre
Attribute festlegen und Beziehungen zu anderen Entitäten herstellen.

Einleitender Tag: <Entity BEFEHLE>

Schliessender Tag: </Entity>

Attribut Beschreibung Beispiel

name Name der Entität. <Entity name="Lieferant">

plural Plural-Bezeichnung der Entität. <Entity name="Lieferant"
plural="Lieferanten">

extends Gibt die Basisklasse an, von der
die Entität erbt.

<Entity name="Lieferant"
plural="Lieferanten"
extends="XBuchungsKonto">

abstract Gibt an, ob die Entität abstrakt
ist. Abstrakte Entitäten können
nicht direkt instanziiert werden
und dienen als Basisklassen für
andere Entitäten.
Standardwert: false.

<Entity name="XBuchungsKonto"
plural="XBuchungsKonten"
extends="CBO" abstract="true">

noAbstractWarning Unterdrückt die Warnung, dass
die Entität abstrakt ist, und
erlaubt (eingeschränkt) die
Instanziierung der Entität. Dies
ist für technische Entitäten
nützlich, die programmatisch
erstellt, aber nicht über die
MyTISM-GUI bearbeitet werden
sollen.

<Entity name="XBuchungsKonto"
plural="XBuchungsKonten"
extends="CBO" abstract="true"
noAbstractWarning="true">

ignoreReverseRelations Gibt an, ob
Rückwärtsbeziehungen für eine
Entität ignoriert werden sollen.

<Entity name="Lieferant"
plural="Lieferanten"
extends="XBuchungsKonto"
ignoreReverseRelations="true">

discriminator Setzt einen benutzerdefinierten
Diskriminator (d.h. die BOT Id)
für die Entität.

<Entity name="Lieferant"
plural="Lieferanten"
extends="XBuchungsKonto"
discriminator="4711">

suid Legt eine speziellen suid
(SerialVersionUID, serial
version unique ID,
Klassenversionskennung) fest.

<Entity name="Lieferant"
plural="Lieferanten"
extends="XBuchungsKonto"
suid="4527893412646488711">

package Gibt ein abweichendes Package
für die Entität an.

package="de.blues.bo"

18

Unter-Element "gdpr" von Entity

Der <gdpr>-Knoten ist ein optionaler Unterknoten innerhalb einer Entity, der alle DSGVO-relevanten
Informationen für diese Entity bündelt.

Struktur des <gdpr>-Knotens:

<gdpr dataCategory="Contract Data" retentionStartDatePath="Vertragsende">
 <affectedPerson path="Kunde.AbstraktePerson"/>
 <affectedPerson path="Adressat"/>
 <retentionVeto path="BuchungsKonto.AbstraktePerson"/>
</gdpr>

Attribut/Element Beschreibung Beispiel

dataCategory (Attribut) Gibt die Datenkategorie der
Entity an (z. B. "Contract Data",
"Invoice Data", "Health Data").
Dieses Attribut ist erforderlich.

<gdpr dataCategory="Contract
Data">

retentionStartDatePath
(Attribut, optional)

Enthält den Pfad zu einem
Datumswert, der den Start der
Aufbewahrungsfrist definiert
(z. B. Vertragsende). Nur
anwendbar, wenn der data
retention start der
dataCategorie den Wert
"custom" enthält.

<gdpr
retentionStartDatePath="Vertra
gsende">

affectedPerson (Element,
optional), Attribut path

Enthält den Pfad zu einer von
dem Datensatz betroffenen
Person. Mehrere
<affectedPerson>-Elemente sind
möglich, um mehrere
betroffene Personen
anzugeben.

<gdpr dataCategory="Contract
Data"> <affectedPerson
path="Kunde.AbstraktePerson"/>
<affectedPerson
path="Adressat"/> </gdpr>

retentionVeto (Element,
optional), Attribut path

Gibt den Pfad zu einem
Datensatz an, der ein Veto
gegen die Löschung dieser
Entity einlegen kann (z. B. eine
Archivierungsanforderung).
Mehrere <retentionVeto>
-Elemente sind möglich.

<gdpr dataCategory="Contract
Data"> <retentionVeto
path="BuchungsKonto.AbstrakteP
erson"/> </gdpr>

Unter-Element "ui" von Entity

Das <ui>-Element innerhalb einer Entity-Definition enthält Attribute, die das Verhalten und die
Darstellung der Entität in der Benutzeroberfläche (UI) beeinflussen.

19

Attribut Beschreibung Beispiel

description Beschreibung der Entität.
Definiert die Ausgabe der
describe()-Methode der Entität
im CBOFormat.

<ui description="Nachname(',
'Vorname)"/>

loadImmediate Gibt an, ob eine Übersicht
(Liste) der Objekte der Entität
direkt in einem geöffneten
Lesezeichen (FTable) angezeigt
werden soll. Aus Performance-
Gründen nur sinnvoll bei
Entitäten mit einer
überschaubaren Anzahl von
Objekten. Standardwert: false.

<ui loadImmediate="false"/>

linkOnly Gibt an, ob Objekte nicht im
Kontext dieses Objekts angelegt,
sondern lediglich mit diesem
Objekt verknüpft werden
können. Standardwert: false.

<ui linkOnly="false"/>

tips Zum Angeben von GUI-Tipps,
d.h. durch Leerzeichen
getrennte Variable:Wert-Paare,
die das Verhalten der UI
konfigurieren.

<ui tips="triState:false"/>

defaultSorting Definiert die
Standardsortierung für
Tabellen, die Objekte dieses
Typs anzeigen. Format:
Spaltenname:Sortierrichtung.
Die Reihenfolge der Einträge
bestimmt die Sortierreihenfolge
(sortLevel). Die
Mehrfachsortierung erfordert
eine zusätzliche Lizenz.

<ui defaultSorting="Name:ASC
Beschreibung:DESC Position.ASC
Eigenschaft:ASC
Eigenschaft.Name:ASC">

20

Attribut Beschreibung Beispiel

autotrim Nur sinnvoll für Entity-
Attribute vom Typ "String". Legt
fest, ob Whitespace am Anfang
und Ende der Eingabe in der
GUI automatisch entfernt wird.
Standardwert für String-
Attribute ist true. Mit
autotrim="false" kann die
automatische Entfernung
deaktiviert werden. Hat keine
Auswirkungen auf Werte, die
mittels Code gesetzt werden.

<ui autotrim="false"/>

defaultSelectionFilter Definiert einen nicht-
interaktiven Filter für die
Auswahl von Objekten diesen
Typs. Der Filter kann als
describe-Clause oder als
Verweis auf ein virtuelles
Attribut angegeben werden und
wird in Popups und anderen
Auswahlfeldern verwendet. Um
gar keine Ergebnisse
anzubieten, muss man FALSE
oder false zurückgeben. Um
keine Filterung zu erreichen,
d.h. es werden alle Datensätze
angeboten, kann man entweder
TRUE, true, einen leeren String,
einen String mit nur
Whitespaces oder aber einfach
nur null zurückgeben, wobei
null hier die präferierte
Variante ist, da dadurch keine
sowieso ignorierte clause
hinzugefügt wird.

<ui
defaultSelectionFilter="'Inakt
iv = NULL OR NOT Inaktiv'"/>
oder `<ui
defaultSelectionFilter="Geschae
ftsbereichFilter"

Unter-Element "lookup" von Entity

Das <lookup>-Element innerhalb einer Entity-Definition ermöglicht die Konfiguration der
Standardsuche für die Entität, wenn sie in einem Popup-Feld in der Benutzeroberfläche
referenziert wird.

21

Attribut Beschreibung Beispiel

defaultProperty Gibt an, in welchem Attribut
der Entität bei der Suche im
Popup-Feld standardmäßig
gesucht werden soll. Wenn der
Benutzer einen Suchbegriff
eingibt, werden die Objekte der
Entität durchsucht, deren Wert
im angegebenen Attribut dem
Suchbegriff entspricht.

<lookup
defaultProperty="Name"/>

defaultSubstring Gibt an, ob die Suche nach einer
exakten Übereinstimmung oder
einem Teilstring suchen soll. *
true: Es wird nach einem
Teilstring gesucht
(Standardwert). * false: Es wird
nach einer exakten
Übereinstimmung gesucht.

<lookup
defaultSubstring="true"/>

defaultCaseSensitive Gibt an, ob die Suche die Groß-
/Kleinschreibung beachten soll.
* true: Die Groß-
/Kleinschreibung wird beachtet.
* false: Die Groß-
/Kleinschreibung wird nicht
beachtet (Standardwert).

<lookup
defaultCaseSensitive="true"/>

Beispiel:

<Entity name="Person">
 <lookup defaultProperty="Nachname" defaultSubstring="true"
defaultCaseSensitive="false"/>
 <attr name="Vorname" type="String"/>
 <attr name="Nachname" type="String"/>
</Entity>

In diesem Beispiel wird festgelegt, dass bei der Suche nach Personen in einem Popup-Feld
standardmäßig im Attribut Nachname gesucht wird. Die Suche erfolgt dabei ohne Berücksichtigung
der Groß-/Kleinschreibung und akzeptiert auch Teilstrings.

Hinweis: Diese Einstellungen können für einzelne Attribute durch das <lookup>-Element innerhalb
des Attributs überschrieben werden.

Unter-Element "code" von Entity

Das <code/>-Element innerhalb einer Entity-Definition enthält Attribute, die die Codegenerierung
für die Entität beeinflussen.

22

Attribut Beschreibung Beispiel

package Gibt ein abweichendes Package
für die Entität an.

<code package="de.blues.bo"/>

generateAs Gibt den Namen der
generierten Basisklasse an. Es
muss dann manuell eine Klasse
erstellt werden, die von dieser
Basisklasse erbt.

<code
generateAs="PersonBase"/>

custom Gibt an, ob die Basisklasse mit
dem Suffix "Base" generiert
werden soll. Es muss dann
manuell eine Klasse erstellt
werden, die von dieser
Basisklasse erbt.

<code custom="true"/>

generate Gibt an, ob für die Entität
Sourcecode generiert werden
soll. Standardwert: true.

<code generate="false">

dependents Gibt an, welche Klassen von
dieser Entität abhängen und bei
Änderungen neu generiert
werden müssen.

<code
dependents="GeschaeftsVorfallS
chemaAspects"/>

Unter-Element "db" von Entity

Das <db>-Element innerhalb einer Entity-Definition enthält Attribute, die das Datenbankverhalten
der Entität beeinflussen.

Attribut Beschreibung Beispiel

persistent Gibt an, ob die Objekte der
Entität in der Datenbank
persistiert werden sollen.
Standardwert: true.

<db persistent="false"/>

name Gibt einen optionalen,
abweichenden Tabellennamen
für die Entität an. Der Name
darf maximal 63 Zeichen lang
sein und keine Unterstriche
enthalten.

<db
name="MyShorterTableNameNoUnde
rscore"/>

23

Attribut Beschreibung Beispiel

streamResource Gibt an, ob mit Instanzen dieses
Typs normalerweise ein BLOB
(Binary Large Object) verknüpft
sein kann. Wird verwendet, um
zu entscheiden, ob beim
Synchronisieren von Objekten
ins Dateisystem auch das BLOB
exportiert werden soll.
Standardwert: false.

<db streamResource="true"/>

noStreamResourceHistory Legt fest, dass keine
Sicherheitskopien der BLOBs
beim Ersetzen im Dateisystem
des Servers angelegt werden
sollen. Standardwert: false.

<db
noStreamResourceHistory="true"
/>

forbidDirectChanges Gibt an, ob direkte Änderungen
an Objekten dieses Typs nur
vom Server vorgenommen
werden dürfen. Solche Objekte
werden nicht zwischen
MyTISM-Nodes synchronisiert.
Standardwert: false.

<db
forbidDirectChanges="true"/>

Unter-Element "report" von Entity

Das <report>-Element innerhalb einer Entity-Definition enthält Attribute, die die Generierung von
Reports für die Entität beeinflussen.

Attribut Beschreibung Beispiel

title Titel für automatisch generierte
Reports.

<report title="Analyse"/>

orientation Seitenausrichtung für
automatisch generierte Reports
("Portrait" oder "Landscape").

<report
orientation="Portrait"/>

fontSizeNormal Standard-Schriftgröße für
automatisch generierte Reports.
Standardwert: 9.

<report fontSizeNormal="10"/>

fontSizeBig Große Schriftgröße für
automatisch generierte Reports.
Standardwert: 16.

<report fontSizeBig="14"/>

Unter-Element "export" von Entity

Das <export>-Element innerhalb einer Entity-Definition ermöglicht die Konfiguration des Exports
von Entitätsdaten. Diese Funktionalität befindet sich noch in der Entwicklung und soll zukünftig

24

den Struktur-Sync, den Initialdaten-Import und manuelle Exports in Fremdsysteme ersetzen.

Zukünftig soll es auch möglich sein, Objekte über die Zwischenablage zwischen verschiedenen
MyTISM-Systemen zu kopieren, sofern die entsprechenden Entitäten in beiden Systemen existieren.

Attribut Beschreibung Beispiel

name Name des Exports.
(Pflichtangabe)

<export name="Initialdaten"/>

primaryKey Primärer Schlüssel für den
Export. Wird für Referenzen
aus anderen Exporten
verwendet. (Pflichtangabe)

<export primaryKey="ISOCode"/>

mode Modus für den Export: * SINGLE:
Für jedes Objekt wird eine
separate Datei erstellt. * LIST:
Alle Objekte werden in eine
gemeinsame Datei geschrieben.
(Pflichtangabe)

<export mode="SINGLE"/>

Hinweise:

• Die genaue Funktionsweise und die Verwendung des <export>-Elements werden in der
zukünftigen Dokumentation detailliert beschrieben.

• Derzeit ist die Funktionalität noch nicht vollständig implementiert.

Beispiel für eine Entity-Definition

<Entity name="Person" extends="CBO" plural="Personen" folder="Kontakte">
 <code custom="true"/>
 <ui description="Nachname(', 'Vorname)"/>
</Entity>

Diese Definition erstellt eine Entität namens "Person" mit den folgenden Eigenschaften:

• Sie erbt von der Klasse CBO.

• Der Plural ist "Personen".

• Sie wird im Ordner "Kontakte" im Navigationsbaum angezeigt.

• Es wird eine benutzerdefinierte Klasse generiert (custom="true").

• Die describe()-Methode verwendet als Format "Nachname(', 'Vorname)".

Attribut

Attribute beschreiben die Eigenschaften einer Entität. Sie werden innerhalb einer Entity-Definition
mit den Tags <attr>, <vattr> (für virtuelle Attribute) und <npattr> (für nicht-persistente Attribute)
definiert.

25

Tag für Attribute: <attr BEFEHLE />

Tag für virtuelle Attribute: <vattr BEFEHLE />

Tag für nicht-persistente Attribute: <npattr BEFEHLE />

Attribut Beschreibung Beispiel

name Name des Attributs. name="Adressen"

backName Definiert den Namen des
Attributs auf der "anderen
Seite" einer Beziehung.

backName="MoeglicheReports"

singular Singularform des
Attributnamens (falls
abweichend von name).

singular="Adresse"

type Datentyp des Attributs. type="Kontakt"

displayFormat Standard-Anzeigeformat des
Attributs.

displayFormat="Name"

relation Beziehung des Attributs zu
einer anderen Entität ("n-1", "1-
n", "n-m").

relation="1-n"

dependent Gibt an, ob abhängige Objekte
beim Löschen des
übergeordneten Objekts
ebenfalls gelöscht werden.
Standardwert: false.

dependent="true"

itemProperty Ermöglicht die manuelle
Sortierung von Objekten in
einer 1-n- oder n-m-Beziehung
über die UI.

itemProperty="Position"

shared Bestimmt, ob die Referenz von
der Entität dieses Attributs
geteilt wird. Standardwert:
false.

shared="true"

default Definiert einen Standardwert
für das Attribut.

default="#,##0.00"

ignoreBackRelation Gibt an, ob Methoden für die
Rückwärtsbeziehung generiert
werden sollen.

ignoreBackRelation="true"

readonly Gibt an, ob das Attribut in der
UI schreibgeschützt ist.
Standardwert: false.

readonly="true"

26

Attribut Beschreibung Beispiel

lazy Gibt für many-relations an, ob
die in Beziehung stehenden
Objekte erst bei der
Verwendung nachgeladen
werden sollen. Standardwert:
true

lazy="true"

omitOnCopy Gibt an, ob das Attribut beim
Kopieren eines Objekts dieses
Typs ignoriert werden soll.

omitOnCopy="true"

Unter-Element "ui" von Attribute

Das <ui>-Element innerhalb eines Attributs beeinflusst die Darstellung und das Verhalten des
Attributs in der Benutzeroberfläche.

Attribut Beschreibung Beispiel

editMode Gibt an, wie das Attribut in der
UI bearbeitet werden kann (
linkonly, viewonly, locked,
writenew, all).

<ui editMode="linkonly">

createInDetailView Gibt an, ob im Formular der
Entität Eingabefelder für die
Many-Relation erstellt werden
sollen. Standardwert: false.

<ui createInDetailView="true">

mandatory Definiert das Attribut als
Pflichtfeld. Derzeit nur teilweise
unterstützt (z. B. nicht von
Solstice). Standardwert: false.

<ui mandatory="true">

tips Zum Angeben von GUI-Tipps,
d.h. durch Leerzeichen
getrennte Variable:Wert-Paare,
die das Verhalten der UI
konfigurieren. Mögliche Werte
sind z. B.: StyledText, Area,
combobox:ATTRIBUTNAME,
formRecursionDepth:INTEGER
(Standardwert: 3), createShared.

<ui tips="triState:false"/>

visible Gibt an, ob das Attribut im
Formular angezeigt werden
soll. Standardwert: true.

<ui visible="false">

expectedWidth Definiert die erwartete Breite
des Attributs im Formular (in
Zeichen).

<ui expectedWidth="10">

27

Attribut Beschreibung Beispiel

selectionFilter Definiert einen nicht-
interaktiven Filter für die
Auswahl von Objekten in
diesem Attribut. Der Filter kann
als describe-Clause oder als
Verweis auf ein virtuelles
Attribut angegeben werden. Um
gar keine Ergebnisse
anzubieten, muss man in dem
virtuellen Attribut FALSE oder
false zurückgeben. Um keine
Filterung zu erreichen, d.h. es
werden alle Datensätze
angeboten, kann man entweder
TRUE, true, einen leeren String,
einen String mit nur
Whitespaces oder aber einfach
nur null in dem virtuellen
Attribut zurückgeben, wobei
null hier die präferierte
Variante ist, da dadurch keine
sowieso ignorierte clause
hinzugefügt wird.

<ui
selectionFilter="('BOTyp.Id='B
ot.Id)"/> oder <ui
selectionFilter="Geschaeftsber
eichFilter"
editMode="linkOnly"/>

Unter-Element "lookup" von Attribute

Das <lookup>-Element innerhalb eines Attributs ermöglicht die Konfiguration der Suche nach
zugehörigen Objekten, wenn das Attribut als Popup-Feld in der Benutzeroberfläche dargestellt
wird.

Attribut Beschreibung Beispiel

property Gibt an, in welchem Attribut
der referenzierten Entität bei
der Suche im Popup-Feld
gesucht werden soll. Wenn der
Benutzer einen Suchbegriff
eingibt, werden die Objekte der
referenzierten Entität
durchsucht, deren Wert im
angegebenen Attribut dem
Suchbegriff entspricht.

<lookup property="Name">

28

Attribut Beschreibung Beispiel

substring Gibt an, ob die Suche nach einer
exakten Übereinstimmung oder
einem Teilstring suchen soll. *
true: Es wird nach einem
Teilstring gesucht
(Standardwert). * false: Es wird
nach einer exakten
Übereinstimmung gesucht.

<lookup substring="true">

caseSensitive Gibt an, ob die Suche die Groß-
/Kleinschreibung beachten soll.
* true: Die Groß-
/Kleinschreibung wird beachtet.
* false: Die Groß-
/Kleinschreibung wird nicht
beachtet (Standardwert).

<lookup caseSensitive="true">

Beispiel:

<Entity name="Kunde">
 <attr name="Ansprechpartner" type="Person" relation="n-1">
 <lookup property="Name" substring="true" caseSensitive="false"/>
 </attr>
</Entity>

In diesem Beispiel wird das Attribut Ansprechpartner der Entität Kunde als Popup-Feld dargestellt.
Wenn der Benutzer in diesem Feld einen Suchbegriff eingibt, werden alle Personen gesucht, deren
Name den Suchbegriff enthält (substring="true"). Die Suche erfolgt dabei ohne Berücksichtigung
der Groß-/Kleinschreibung (caseSensitive="false").

Unter-Element "report" von Attribute

Das <report>-Element innerhalb eines Attributs ermöglicht die Anpassung der Darstellung des
Attributs in automatisch generierten Reports.

Attribut Beschreibung Beispiel

visible Steuert die Sichtbarkeit des
Attributs im Report. * true: Das
Attribut wird im Report
angezeigt (Standardwert). *
false: Das Attribut wird im
Report nicht angezeigt.

<report visible="false">

29

Attribut Beschreibung Beispiel

relativeWidth Legt die relative Breite des
Feldes für das Attribut im
Report fest. Der Standardwert
ist 1. Ein höherer Wert
vergrößert die Breite des
Feldes.

<report relativeWidth="2">

position Bestimmt die Position des
Attributs im Report. Attribute
mit niedrigeren
Positionswerten werden zuerst
angezeigt.

<report position="100">

sort Gibt an, ob die Daten im Report
nach diesem Attribut sortiert
werden sollen. * asc:
Aufsteigende Sortierung. * desc:
Absteigende Sortierung.

<report sort="asc">

manySort Ermöglicht die Sortierung nach
mehreren Attributen. Die
Attributnamen werden als
kommaseparierte Liste
angegeben, wobei jedem
Attributname der Suffix :A
(aufsteigend) oder :D
(absteigend) angehängt wird.

<report manySort="Tid:A,
Nummer:D">

alias Erstellt im Report eine Gruppe
mit dem angegebenen Alias, um
die Attribute der zugehörigen
Entität aus einer Many-Relation
anzuzeigen.

Beispiele:

<Entity name="Produkt">
 <attr name="Name" type="String">
 <report relativeWidth="2" position="1" sort="asc"/>
 </attr>
 <attr name="EAN" type="String">
 <report relativeWidth="1" position="2"/>
 </attr>
 <attr name="Preis" type="Decimal">
 <report visible="false"/>
 </attr>
</Entity>

30

In diesem Beispiel wird das Attribut Name im Report mit doppelter Breite (relativeWidth="2") an
erster Stelle (position="1") angezeigt und die Daten werden alphabetisch nach dem Namen sortiert
(sort="asc"). Das Attribut EAN wird an zweiter Stelle (position="2") angezeigt. Das Attribut Preis
wird im Report nicht angezeigt (visible="false").

<Entity name="Auftrag">
 <attr name="Auftragsnummer" type="String"/>
 <attr name="Positionen" type="Auftragsposition" relation="1-n">
 <report alias="Position"/>
 </attr>
</Entity>

<Entity name="Auftragsposition">
 <attr name="Artikelnummer" type="String"/>
 <attr name="Menge" type="Integer"/>
</Entity><report alias="Position">

Dieses Beispiel zeigt die Attribute der Entität Auftragsposition in einer Gruppe namens "Position"
an.

Unter-Element "virtual" von Attribute

Das <virtual>-Element innerhalb eines Attributs definiert zusätzliche Eigenschaften für virtuelle
Attribute.

Attribut Beschreibung Beispiel

aggregate Gibt an, ob der Wert des
virtuellen Attributs durch eine
Aggregatfunktion berechnet
werden soll.

<virtual
aggregate="BO.Union:Gruppe.Ben
utzer">

cacheMode Gibt an, ob der Wert des
virtuellen Attributs versioniert
werden soll.

<virtual
cacheMode="VERSIONED">

preCachingHook Name einer Methode, die auf
den Wert des virtuellen
Attributs angewendet wird,
bevor er im Cache gespeichert
wird.

<virtual
preCachingHook="compactBigDeci
mal"> (mit einer
entsprechenden Methode
compactBigDecimal(attribute =
String, value = BigDecimal)
returns BigDecimal)

Aggregatfunktionen:

Aggregatfunktionen ermöglichen die einfache Definition von virtuellen Attributen, die berechnete
Werte zurückgeben (z. B. die Summe aller Elemente einer Relation).

Beispiele für Aggregatfunktionen:

31

• String.sortJoinCommaList: Verbindet alle Strings einer Liste zu einem kommaseparierten String.

• BigDecimal.sum: Summiert alle Zahlen einer Liste.

• BO.union: Bildet die Vereinigung mehrerer Objektmengen.

• Object.firstNonNull: Gibt das erste nicht-null-Element einer Liste zurück.

Unter-Element "np" von Attribute

Das <np>-Element innerhalb eines Attributs definiert zusätzliche Eigenschaften für nicht-persistente
Attribute.

Attribut Beschreibung Beispiel

calculationAuthority Gibt an, wo der Wert des nicht-
persistenten Attributs
berechnet werden soll ("client"
oder "server"). Wenn die
Berechnung auf dem Server
erfolgt, wird der berechnete
Wert an den Client übertragen
und dort der bestehende Wert
ersetzt. Standardwert: client.

<np
calculationAuthority="server"/
>

Unter-Element "db" von Attribute

Das <db>-Element innerhalb eines Attributs beeinflusst das Datenbankverhalten des Attributs.

Attribut Beschreibung Beispiel

indexed Gibt an, ob die Werte des
Attributs für die Datenbank-
Volltextsuche indiziert werden
sollen. Standardwert: true.

<db indexed="false">

unique Gibt an, ob die Eindeutigkeit
der Werte des Attributs in der
Datenbank erzwungen werden
soll. Standardwert: false.

<db unique="true">

Restliche Unter-Elemente von Attribute

Unter-Element Beschreibung Beispiel

backRelation Ermöglicht die explizite
Definition der
Rückwärtsbeziehung, z. B. um
einen anderen Namen zu
verwenden oder die Beziehung
genauer zu konfigurieren.

<backRelation
name="BezugnehmendePosten"/>

32

Unter-Element Beschreibung Beispiel

comment Ermöglicht das Hinzufügen
eines Kommentars zum Attribut
im Schema.

<comment>Dient zur Speicherung
von XXX</comment>

Beispiel für eine Attribut-Definition

<attr name="Adressen" singular="Adresse" type="Kontakt" relation="1-n"
 dependent="true" itemProperty="Position">
</attr>

Diese Definition erstellt ein Attribut namens "Adressen" mit den folgenden Eigenschaften:

• Der Singular ist "Adresse".

• Der Datentyp ist "Kontakt".

• Es handelt sich um eine 1-n-Beziehung.

• Abhängige Objekte werden beim Löschen des übergeordneten Objekts ebenfalls gelöscht.

• Die Reihenfolge der Objekte wird über das Attribut "Position" bestimmt und kann in der UI
manuell angepasst werden.

33

Vordefinierte Datentypen für Attribute
MyTISM bietet eine Reihe von vordefinierten Datentypen für Attribute. Hier sind zwei Beispiele:

Timespan
Der Datentyp Timespan speichert eine feste Zeitspanne als Anzahl von Sekunden. Aktuell werden
intern Sekunden verwendet, dies sollte aber ggfs. aktualisiert werden, da Millisekunden präziser
wären und möglicherweise in Zukunft verwendet werden. Wenn ein Attribut mit type="Timespan"
definiert wird, ist der entsprechende Java-Typ Long.

Timespan eignet sich für Anwendungsfälle, in denen die genaue Dauer eines Ereignisses oder
Vorgangs gespeichert werden soll.

Duration
Im Gegensatz zu Timespan speichert Duration eine variable Zeitspanne als Kombination von Jahren,
Monaten, Tagen, Stunden, Minuten und Sekunden (inklusive Millisekunden). Die genaue
Zeitspanne wird in Abhängigkeit von einem Referenzdatum berechnet.

Intern wird der Wert als javax.xml.datatype.Duration gespeichert.

Beispiel: P1Y0M0DT0H0M0S entspricht 365 Tagen ab dem 1.1.2015, aber 366 Tagen ab dem 1.1.2012
(Schaltjahr).

Wichtig: Die Behandlung von Duration im Code ist an einigen Stellen noch nicht optimal und sollte
verbessert werden.



Die Verarbeitung von Duration-Werten im Code ist an einigen Stellen noch nicht
optimal. Beispielsweise wird in L10nTimespanFormat.nrx und DurationType.nrx
die Duration oftmals in eine feste Zeitspanne umgewandelt, wobei das Epoch-
Datum (1. Januar 1970) als Referenzdatum verwendet wird, anstatt ein anderes
Referenzdatum zu berücksichtigen. Dies kann zu Ungenauigkeiten oder Fehlern
bei der Berechnung von Zeitspannen führen.

34

Schemapflege / Datenbankupdates
Einige Schemaänderungen können automatisch vom Schemagenerator verarbeitet werden. Für
komplexere Änderungen, die nicht automatisch durchgeführt werden können, müssen Datenbank-
Update-Skripte verwendet werden.

Liste der durch den UpdateHandler zur Verfügung
gestellten Hilfsmethoden
Der UpdateHandler bietet Hilfsmethoden für die Durchführung von Datenbankupdates. Hier sind
zwei Beispiele:

Name Parameter Beschreibung Beispielaufruf

checkTableExists Tabellenname Prüft, ob die
angegebene Tabelle in
der Datenbank
existiert.

checkTableExists('bele
g')

checkColumnExists table: Tabellenname,
column: Spaltenname

Prüft, ob die
angegebene Spalte in
der angegebenen
Tabelle existiert.

checkColumnExists(tabl
e: 'beleg', column:
'belegnr')

35

Coredata-Generator
Der Coredata-Generator (de/ipcon/schema/generators/CoreData.nrx) füllt die Datenbank mit initialen
Daten und Objekten:

1. Füllt die BOT-Liste für alle Entitäten.

2. Legt den Admin-Benutzer und die Admins-Gruppe an.

3. Legt Sammelordner für automatisch generierte Objekte an (werden normalerweise wieder
gelöscht, da alle Entitäten explizit einen anderen Ordner angeben sollten).

4. Legt Standard-Druckziele an.

5. Erzeugt Standardformulare, -schablonen und -lesezeichen für jede Entität (außer Schablonen
für abstrakte Entitäten und Lesezeichen für nicht-persistente Entitäten).

6. Erzeugt Standard-Reports (Einzel und Liste) für jede Entität.

7. Lädt und erzeugt zusätzliche, vorgebaute Strukturelemente.

8. Löscht obsolete automatisch generierte Strukturelemente und leere Ordner.

Zusätzliche, vorgebaute Strukturelemente
Zusätzlich zu den automatisch generierten Strukturelementen können vorgebaute Formulare,
Schablonen und Lesezeichen in die Datenbank eingespielt werden. Diese müssen im Verzeichnis
de/ipcon/db/core/resources abgelegt werden. Das Format entspricht dem der exportierten Dateien
aus der Formularsynchronisation.

Beim Bauen von MyTISM-Kernel.jar werden die Dateien im Verzeichnis de/ipcon/db/core/resources
gesammelt und in einer Liste ("ResourceIndex") im JAR gespeichert. Der Coredata-Generator liest
diese Liste und erstellt die entsprechenden Objekte in der Datenbank.

Unterstützte Angaben für vorgebaute Strukturelemente

Vorgebaute Strukturelemente (Formulare, Schablonen und Lesezeichen) werden durch XML-
Dateien definiert. Folgende Elemente und Attribute werden unterstützt:

Root-Element:

• Name: Gibt den Typ des Strukturelements an (Formular, Schablone oder Lesezeichen).

Attribute des Root-Elements:

• Name: Name des Strukturelements.

◦ Frei wählbar, aber es wird die Konvention "<Entityname> (Vorgebaut)" oder "<Entityname>
(Vorgebaut; <Kommentar>)" empfohlen.

• ElterPfad: Pfad des Ordners, in dem das Strukturelement abgelegt werden soll (z. B.
/Ordner1/Ordner2).

◦ Ordner werden bei Bedarf automatisch erstellt.

36

• Prioritaet: Priorität des Strukturelements (höhere Werte bedeuten höhere Priorität).

◦ Sollte im Allgemeinen nicht verwendet werden, da automatisch ein Standardwert (-50)
vergeben wird.

• Tid: "Klartext-Identifier" des Strukturelements.

◦ Sollte im Allgemeinen nicht verwendet werden, da automatisch ein konsistenter Wert
vergeben wird.

Kind-Elemente des Root-Elements:

• Beschreibung: Textuelle Beschreibung des Strukturelements.

• BOTyp: Gibt an, für welche Entität das Strukturelement verwendet werden soll (Attribut Name).

• Parameter: Enthält die detaillierte Definition des Strukturelements, insbesondere für
Formulare.

• Formular: (Nur für Schablonen) Gibt das Formular an, das zum Bearbeiten neuer Objekte
verwendet werden soll (Attribut Name).

Nicht unterstützte Elemente/Attribute:

• Gruppen, Polymorphic: Diese Elemente/Attribute werden derzeit nicht unterstützt. Alle
Strukturelemente werden automatisch der Admins-Gruppe zugewiesen.

Beispiel für ein vorgebautes Formular:

<Formular Name="$R{_Benutzer} (Vorgebaut)"
ElterPfad="/Admins/MyTISM/Benutzerverwaltung">
 <Beschreibung>Vorgebautes, aufgeraeumteres Benutzer-Formular, mit Gruppierungen der
Alarm-
 und Benachrichtigungsinfos und einfacherer, halbautomatischer
 Benachrichtigungskonfiguration.</Beschreibung>
 <Parameter>
 <TabbedView tabPlacement="TOP">
 <!-- ... Inhalt ... -->
 </TabbedView>
 </Parameter>
 <BOTyp Name="Benutzer"/>
 <Gruppen>
 <Gruppe Name="RG_Solstice_Login"/>
 </Gruppen>
</Formular>

Wichtig: Wenn ein vorgebautes Strukturelement geändert oder hinzugefügt wurde, muss die Datei
.checked-initialdata vor dem Start des Servers gelöscht werden, damit die Änderungen wirksam
werden. Dies wird in Zukunft evtl. automatisiert werden.

37

Der Array Datentyp
Arrays sind ein weiterer Datentyp, der vom Schema unterstützt wird. Mit ihnen können geordnete
Listen von skalaren Werten in der Datenbank abgelegt werden. Arrays sind in ihrer Länge,
zumindest theoretisch, unbeschränkt und nicht auf eine feste Anzahl Einträge pro Attribut
festgelegt. Praktisch muss natürlich abgewogen werden, wie "groß" ein Array werden darf, da
praktische Limits sowohl im Speicher als auch auf Datenbankebene existieren.

Jedoch eigenen sich Arrays nicht für Situationen, in denen Datenbankqueries häufig einzelne im
Array enthaltene Werte abfragen müssen, denn hierfür gelten teils starke
Geschwindigkeitseinbußen. Für diese Fälle sollte eine explizite Posten-Relation bevorzugt werden.
Oder, falls die maximale Länge der Arrays konstant und ausreichend klein ist, eine umsetzung der
möglichen Werte als einzelne Attribute.

38

Vordefinierte Arrays von Skalaren
Die folgenden Skalare können in Array Form abgelegt werden. In den meisten Fällen reicht es,
eckige Klammern hinter den Typnamen des Skalars hinzuzufügen um einen neuen Typ als dessen
Array zu definieren.

Arrays werden im Zuge der Übertragung zwischen Server und Client zu String normalisiert und
serialisiert. Dabei wird üblicherweise eine json kompatible Darstellung verwendet. Die Spalte
Protokollserialisierung gibt das Format der einzelnen Werte in der Json-Liste an. Fehlt bei einem
Index der Wert, sofern erlaubt, wird dieser immer als null (ohne Anführungszeichen) gerendert.

Table 1. Die folgenden Arrays sind vordefiniert.

Skalar Typname des Arrays SQL interner
Datentyp

interne Serialisierung

Boolean Boolean[] boolean[] boolean, d.h. true, false

Datetime Datetime[] timestamptz[] String, im ISO 8601
Format

Decimal Decimal[] decimal[] Dezimalzahl, int./U.S.
Notation (Punkt), ohne
Anführungszeichen

Duration Duration[] interval[] String, im XML 1.0
Duration Format

Email Email[] text[] String

Integer Integer[] int4[] Ganzzahl, ohne
Anführungszeichen

Long Long[] bigint[] Ganzzahl, ohne
Anführungszeichen

String String[] text[] String

Timespan Timespan[] bigint[] Ganzzahl, in Sekunden



Bei Datentyp String[] sollte die Anwendungslogik darauf achten, dass die
Textmenge pro Index nicht Überhand nimmt. Für große bzw. viel Text sind
alternative Speichermöglichkeiten, z.B. als BLOB, möglicherweise die bessere
Wahl.

39

Verwendung als Attributtyp
Arrays lassen sich im Schema wie normale Skalare verwenden.

<attr name="Longs" type="Long[]"/>
<attr name="Integers" type="Long[]"/>
<attr name="Kommazahlen" type="Decimal[]"/>


Attributnamen von Arrays sollten im Plural sein, da es sich um eine Menge
handelt.



Derzeit darf kein Singular bei der Attributedefinition angegeben werden, da sonst
der Singular den Namen der Tabellenspalte in der DB bestimmt. Das kann bei OQL
Queries zu Verwirrung und Datenverlust führen, falls sich das Verhalten hier
ändern sollte.

40

Definition von neuen Arraytypen
Es gibt folgende Möglichkeiten einen neuen Array-Type zu definieren:

1. Man leitet von einem existierendem Array ab. In diesem Fall erbt man alle vorhandenen
Parameter, sowohl auf der Array- als auch der Komponenten Ebene. Parameter des abgeleiteten
Arrays werden übernommen und können überschrieben werden. Nachteil ist, dass man die
einzelnen Komponenten nicht weiter einschränken kann.

2. Man erstellt einen neuen Array, der sich auf eine existierende Komponente stützt. In diesem
Fall kann man Einschränkungen auf Komponenten Ebene beliebig bestimmen. Nachteil kann
sein, dass man Einschränkungen auf Array Ebene explizit definieren muss.

Beispiele hierzu werden in der Sektion Vererbung genannt.

Limitiere die Komponenten
Einschränkungen auf den Wert einzelner Komponenten werden über die Typdefinition der
Komponente bestimmt.

Parameter
Die folgenden Parameter stehen Arraytypen zur Verfügung.

allowNullElements

Erlaubte Werte: true/false
Default: false
Wenn true, dann ist null ein gültiger Einzelwert innerhalb des Arrays. Wenn false, dann darf der
Array auf keinem Index ein null enthalten.

useComponentsGUIText

Erlaubte Werte: true/false
Default: variabel
Wenn true, dann wird die Textdarstellung in der GUI der Einzelwerte von der definierten
Komponente übernommen. Um korrektes Escaping des Inhaltes zu gewährleisten wird wird der
Array in diesem Fall wie ein String[] dargestellt, unabhängig vom echten Datentyp. Wenn false,
dann entspricht die Textdarstellung des Arrays dem json Standart. Sofern nichts angegeben ist,
wird für Ganzzahlen false genommen, für Strings oder internationalisierbare Komponenten
true.

minElements

Erlaubte Werte: Integer >= 0
Default: ohne Wert
Legt eine untere Schranke (inklusive) für die Anzahl an Einzelwerten des Arrays fest. Ohne
Angabe: Unbeschränkt, d.h. effektiv 0.

maxElements

Erlaubte Werte: Integer > 0

41

Default: ohne Wert
Legt eine obere Schranke (inklusive) für die Anzahl an Einzelwerten des Arrays fest. Muss
größer oder gleich minElements sein, sofern beide Werte angegeben sind. Ohne Angabe:
Unbeschränkt.

Vererbung
Arrays müssen entweder einen anderen Array erweitern oder einen neuen Array definieren. Ein
neuer Array kann definiert werden, indem dem Namen des Typs einer einzelnen Komponente ein
[] nachgestellt wird.

<Type name="NumericStringArrayKomponententyp" extends="String"> ①
 <parms mustMatch="[+-]?[0-9]+"/> ②
</Type>
<Type name="NumericStringArray" extends="NumericStringArrayKomponententyp[]"> ③
 <parms allowNullElements="false"/> ④
</Type>
<Type name="NullableNumericStringArray" extends="NumericStringArray"> ⑤
 <parms allowNullElements="true"/> ⑥
</Type>

① Definiert einen neuen String-Typ, der sich von String ableitet.

② Einschränkungen, die für jeden einzelnen Wert dieses Typs gelten.

③ Typname der Komponente + [] definiert einen Array dieses Typs.

④ Einschränkungen auf Länge und Inhalte des Arrays, hier: verbiete null als Wert im Array.

⑤ Erweitert einen existieren Array typ. Der Komponententyp wird übernommen und ist
NumericStringArrayKomponententyp

⑥ Erlaube null als Array Werte.

42

Tabellenansicht in der GUI
Verwendet der aktuelle BOLoader ein InstrumentingSchema, kann der Inhalt eines Arrays auch als
Relation dargestellt werden. Dies ist in erster Linie für Darstellung in der GUI und (readonly)
Zugriff in Reports gedacht. Intern sollten Arrays immer direkt verwendet werden.

Das "AsRelation" Postfix von Array Attributen
Das InstrumentingSchema erzeugt die nötige Infrastruktur automatisch, wenn das erste Mal auf ein
Attribut mit Postix AsRelation zugegriffen wird, dieses Attribut derzeit noch nicht existiert und der
Name ohne das Postfix ein Array Attribut ist.

Daraufhin wird intern ein Objekt vom Typ ArrayZeilenWrapper gebaut, welches jede Komponente
des Arrays über ArrayZeilenDelegate erzeugt und den Zugriff als 1-n Manyrelation erlaubt. Der
Wert der Komponente ist typsicher über das Attribut Value verfügbar. Um Namenskonflikte bei
virtuellen Properties zu vermeiden, wird eine virtuelle Sub-Entität von ArrayZeilenDelegate als
Namensraum erzeugt.

Schema

<attr name="Werte" type="Decimal[]"/>

Formulardefinition

<Table property="WerteAsRelation" columns="Position, ASC | Value | Attributname | Id |
Index">
 <DetailView>
 <Border etched="true" title="$R{Details}">
 <View>
 <Text property="Attributname"/>
 <Text property="Value"/>
 </View>
 </Border>
 </DetailView>
</Table>

Mit den Beispielwerten [9.9,7.8,5.5] (en_us) bzw. ["9,9","7,8","5,5"] (de_de) sieht das Formular
dann folgendermaßen aus:

43

Position wird automatisch als itemProperty der Relation gesetzt, wodurch es möglich wird zwei
Komponenten zu vertauschen, neue einzufügen oder existierende zu löschen. Sofern das Array
Attribut nicht Readonly ist, kann der Benutzer über das Value Attribut den Wert auch verändern.

Die virtuelle Entität als virtueller Namensraum
Was ist der virtuelle Namensraum?

Der von den ArrayAsRelation aufgespannte virtuelle Namensraum ist nichts anderes als eine
virtuelle Entität. Diese virtuelle Entität existiert nur innerhalb des aktuellen
InstrumentingSchemas. Die von Arrays verwendete v-Entität leitet sich immer von
ArrayZeilenDelegate ab, sie ist folglich nicht persistent.

Vorteile

Die virtuellen Entitäen erlauben eine einfachere Formulardefinition. So ist der Einzelwert des
Arrays immer mit dem (virtuellen) Attribut Value definiert. Dieses Attribut enthält sogar die
Typinformationen des Arrays, dadurch wird der Wert korrekt gerendert und die GUI kann das
Format bei der Eingabe prüfen. Kurz: Dadurch verhält sich die GUI bei den einzelnen
Komponenten genau wie bei Skalaren dieses Typs.

Die virtuelle Entität im generischen ArrayAsRelation Fall

Der Name der virtuellen Entität besteht aus drei Elementen, welche durch Unterstriche _
voneinander getrennt sind.

1. ArrayComponent ist ein konstanter Prefixtext. Er wurde als 'Future proofing' hinzugefügt und
grenzt den erzeugten Namen von anderen bestmöglich ab.

2. Entitätsname der Name der Entität, auf dem das Array Attribut definiert ist.

3. Attributname der Name des Array Attributs.

Die Kombination Entity + Attribut muss innerhalb des Schemas immer eindeutig sein und bietet
deswegen eine gute Basis für eindeutige, generierte Namen. Ist das Array Attribut Werte auf einer
Entität Messwert deklariert, so heißt die virtuelle Entität ArrayComponent_Messwert_Werte. Das
gilt auch, falls das anzuzeigende BO eine Subklasse von Messwert sein sollte.

44

Die virtuelle Entität bei selbstdefinierten ArrayZeilenWrapper

Werden mehrere Arrays verglichen, so folgt dem o.g. Namensschema noch ein numerischer
Hashcode. Dieser berechnet sich aus den Entitäten und Array Attributen bei Initialisierung des
Wrappers. Dieser Postfix sollte als instabil angesehen und ist nicht für die Verwendung mit
virtualProperties im Formular vorgesehen, sofern diese nicht dynamisch erzeugt werden.

Um in diesem Fall virtualProperties mitgeben zu können, muss dem ArrayZeilenWrapper bei der
Initialisierung ein expliziter Name für die Entität mitgegeben werden. Siehe der Parameter mit
Wert AUniqueEntityName in diesem Beispiel.

Zeilen um virtuelle Properties anreichern
Das Vorgehen um weitere Tabellenspalten zu generieren ist (fast) wie im normalen Fall. Namen ist
hier ein einfaches Attribut vom Typ String[], welches auf einer Entität Schauspieler definiert ist
und eine Liste von Charakternamen enthält.

Die virtuelle property Greeter greift auf den einzelnen Namen sowie die Position in der Liste zu und
erzeugt einen einfachen Text. Da der Text etwas länger ist, wurde die expectedWidth erhöht -
alternativ lässt sich das natürlich auch über die Spaltendefinition machen.

Der erzeugte Namensraum für die Entität (singular) Schauspieler und das Attribut Namen ist
ArrayComponent_Schauspieler_Namen.

45

<Table property="NamenAsRelation" columns="Position, ASC | Value | Greeter">
 <virtualProperty name="Greeter" entity="ArrayComponent_Schauspieler_Namen">
 <ui expectedWidth="30"/>
 <get><![CDATA[return "Hallo $bo.value, du bist ${bo.position > 3 ? 'leider nicht
' : ''}in den Top 3"]]></get>
 </virtualProperty>
 <DetailView>
 <Border etched="true" title="$R{Details}">
 <View>
 <Text property="Value"/>
 <Text property="Greeter"/>
 </View>
 </Border>
 </DetailView>
</Table>



Der Namensraum wird lazy erzeugt, wenn im Formular das erste mal auf das
AsRelation Attribut zugegriffen wird. Deswegen muss die virtualProperty derzeit
innerhalb des Table-Elements definiert werden.

Ausserhalb kommt es zu folgender Fehlermeldung:
Das in einer Spaltendefinition angegebene Attribut "Greeter" existiert nicht;
vielleicht ein Tippfehler?

Selbstdefinierte Tabellenansicht in der GUI
Es ist möglich beliebig viele Arrays miteinander zu vergleichen, diese müssen nichteinmal von der
gleichen Instanz kommen.

Gegeben sei folgende, einfache Entität.

<Entity name="Beispiel" extends="CoreBO"....>
 <attr name="Other" type="Beispiel" relation="n-1"/>
 <attr name="Longs" type="Long[]"/>
 <attr name="Strings" type="String[]"/>
</Entity>

Um die einzelnen Werte von Longs und Strings des aktuellen BOs mit dem von Other zu
vergleichen, ist folgende Infrastruktur nötig:

46

<virtualProperty name="CombinedArrayWrapper" entity="Beispiel"
type="ArrayZeilenWrapper" relation="n-1" cached="SIMPLE">
 <get><![CDATA[
 import de.ipcon.db.core.ArrayZeilenWrapper
 return ArrayZeilenWrapper.of([bo, bo, bo.other, bo.other] as BO[],
 ['Longs', 'Strings', 'Longs', 'Strings'] as String[],
 ['MyLong', 'MyString', 'OtherLong', 'OtherString'] as String[],
 'AUnqiueRelationName',
 'AUniqueEntityName')
]]></get>
</virtualProperty>
<!-- switch the bo to the wrapper -->
<Element property="CombinedArrayWrapper">
 <visibleIf language="groovy"><![CDATA[true //FIXME currently needed]]></visibleIf>
 <!-- show the arrays as relation -->
 <Table property="AUnqiueRelationName"
 columns="Position, ASC | MyLong | OtherLong | MyString | OtherString">
 <!-- optional, define additional properties -->
 <virtualProperty name="Identisch" entity="AUniqueEntityName" type="Boolean">
 <get><![CDATA[return bo.MyLong == bo.OtherLong && bo.MyString == bo.OtherString
]]></get>
 </virtualProperty>
 <DetailView>
 <Border etched="true" title="$R{Details}">
 <View>
 <Text property="MyLong"/>
 <Text property="OtherLong"/>
 <Text property="MyString"/>
 <Text property="OtherString"/>
 <Checkbox property="Identisch"/>
 </View>
 </Border>
 </DetailView>
 </Table>
</Element>

• cached="SIMPLE" ist wichtig, da der ArrayZeilenWrapper bei einer Änderung am bo nicht neu
erzeugt werden darf.

◦ Ein ArrayZeilenWrapper registriert sich als Listener an den Quell-Arrays und reagiert auf
Änderungen an den Daten.

◦ Mehrere Wrapper die von der Definition identisch sind, könnten sich ohne die cached
Anweisung gegenseitig in die Quere kommen.

• ArrayZeilenWrapper#of hat einige Parameter, welche, über den gleichen Index als Tuple
zusammengefasst, die Datengrundlage definieren.

◦ BO[] bos : Die BO Instanzen mit den konkreten Daten.

◦ String[] attribute: Der Name des Array Attributs, aufgelöst auf dem entsprechenden BO
Parameter, welches als Datengrundlage gilt.

47

◦ String[] aliase: Entweder komplett null für autom. generierte Attribute ODER eine Liste mit
eindeutigen Bezeichnern, die eine Komponente des BO x Attribut - Tupels repräsentieren.

▪ Im folgenden bedeutet 'alias': Der Name des autom. generierten virtualProperties,
welches auf einer virtualEntity von ArrayZeilenDelegate definiert ist.

◦ AUnqiueRelationName darf noch nicht als Attribut auf der Entität ArrayZeilenWrapper
existieren.

▪ Es ermöglicht den Wechsel in den erzeugten Namensraum.

▪ Dies ist das Gegenstück zum autom. generierten "…AsRelation" Attributnamen des
einfachen Falls.

▪ Übliches Fehlerbild, wenn der Name nicht eindeutig ist: Die Columns können im
Formular nicht aufgelöst werden, zudem haben die Properties u.U. die falsche
Formatierung.

◦ AUniqueEntityName bestimmt den Namen der virtuellen Entität, die sich von
ArrayZeilenDelegate ableiten muss.

▪ Wird automatisch angelegt, sofern sie noch nicht existiert.

▪ Kann weggelassen werden, solange der Namensraum nicht erratbar sein muss - i.e.
keine virtualProperties hinzugefügt werden müssen.

• visibleIf und Element-Wrapper sind derzeit nötig.

◦ Todo: Zumindest für das 'visibleIf' die Ursache prüfen und vereinfachen.

Einschränkungen:

• Die Kombination bo-Instanz zu Attribut muss eindeutig sein, d.h. wird es zu einem Fehler
kommen, falls bo.other == bo ist.

• Die verwendeten Aliase dürfen noch nicht als Attribute auf ArrayZeilenDelegate oder einer
super-Entität existieren.

◦ Ein Alias 'Id' ist z.B. nicht erlaubt, weil das Attribut 'Id' auf der Entität BO definiert ist.

◦ Als Referenz-Entität gilt ArrayZeilenDelegate, d.h. es sind nur Aliase erlaubt, die auf
ArrayZeilenDelegate noch nicht existieren.

◦ Gleiche Aliase in unterschiedlichen virtualEntities von ArrayZeilenDelegate sind jedoch
explizit erlaubt. Der Alias 'Value' ist solches ein Beispiel.

• Die zusammengefassten Arrays müssen alle die gleiche Länge haben. Ansonsten kommt es zu
einer Exception und/oder die Tabelle wird leer dargestellt.

• Falls Arrays mit unterschiedlichen Dimensionen angezeigt werden sollen, kann dies über
ein/mehrere addVirtualProperty gemacht werden, die jeweils einen Array zurückgegeben. Das
virtualProperty muss sich darum kümmern, den Rückgabewert mit passenden Dummy-Werten
auf die richtige Länge zu padden. Ist etwas umständlich, aber machbar.

Ansicht in Automatikformularen als String
In Automatikformularen werden Arrays in einfachen Textfeldern mit ihrer an json angelehnten
Textdarstellung angezeigt. Diese Darstellung kann die Locale beachten, d.h. der angezeigte String

48

kann sich vom newValue der BPs unterscheiden.

• FIXME ein paar konkrete Beispiele.

ArrayZeilenDelegate / Wrapper
• Erklärung Attribute auf ArrayZeilenDelegate

◦ Index nur für interne verwendung, maximal readonly zugriff von außerhalb erlaubt.
Falsche Verwendung kann die Arraydaten zerstören.

49

Verwendung in OQL Queries
siehe OQL Dokumentation

50

Umgang mit Arrays im Code
Der Umgang mit Arrays im Code wurde bestmöglichst an das Verhalten der normalen Attribute
angelehnt. Im Gegensatz zu den normalen Skalaren sind Arrays jedoch von rund am "mutable",
was in der Implementierung von beschreibbaren v-attrs beachtet werden muss.

51

Persistente Array Attribute

Verfügbare Methoden
Beispiel: Ein Attribut "Werte" ist im Schema als "Integer[]" definiert. Dann werden die folgenden
Methoden automatisch generiert:

• getWerte():Integer[] gibt eine Kopie des gespeicherten Arrays zurück. Das zurückgegebene
Array darf modifiziert werden, es hat keinen Einfluss auf die Werte des BOs. Kann null oder
leer sein.

• getWerte(fallback:Integer[]):Integer[] gibt eine Kopie des gespeicherten Arrays zurück bzw.
fallback, falls das Attribut null ist. Ist das Attribut das leere Array, dann wird dieses leere Array
zurückgegeben.

• getWerteNN():Integer[] wie oben, mit einem leeren Array als fallback.

• getWerte(index:int):Integer gibt die Komponente des Arrays mit diesem 0 basierten Index
zurück. Hierdurch können auf einzelne Werte zugegriffen werden, ohne das eine Kopie des
Arrays erstellt wird. Es findet keine Indexprüfung statt und der Array wird direkt zugegriffen,
d.h. NullPointer- oder IndexOutOfBounds-Exceptions sind möglich.

• getWerteLength():int gibt die aktuelle Länge des Arrays zurück. Ist das Attribut null, wird 0
zurückgegeben.

• setWerte(neuerWert = Integer[]):void setzt das Attribut auf einen neuen Wert und zeichnet die
Änderungen auf, sofern das BO included wurde. Die übergebene Instanz wird intern als Kopie
gespeichert, wodurch spätere/implizite Änderungen an der Parmameter Instanz ignoriert
werden.

• setWerte(index:int, v:Integer) aktualisiert eine einzelne Komponente des Arrays am
gegebenen Index auf einen neuen Wert. Es findet keine Indexprüfung statt, d.h. NullPointer-
oder IndexOutOfBounds-Exceptions sind möglich. Erstellt im Hintergrund eine Kopie des
Arrays.

Hinweise
• Code sollte so strukturiert werden, dass ein Array zuerst vollständig gebaut und befüllt wird,

bevor dessen es einem Attribut zugewiesen wird. Da Arrays bei den Attributzugriffen kopiert
werden müssen, erhöht das die Performance und verhindert je nach Kontext, z.B. während
verifyOnServer, dass Zwischenergebnisse aufgezeichnet werden.

• Soll nur über ein Array iteriert werden, dann kann ist ein indexbasierter loop effizienter als ein
'loop over':

loop i=0 to bo.getWerteLength()
 val = bo.getWerte(i)
 ...
 end

52

• Die generierten Methoden verwenden Arrays statt immutable Listen, da zum Zeitpunkt der
implementation keine Generics in Netrexx verfügbar waren. D.h. konnten dadurch mehrere
explizite Casts vermieden werden.

Hinweise bei v-attrs:
• Vorsicht, wenn der Rückgabewert des getters intern gecached wird. Arrays sind von natur aus

mutable und sollten nicht direkt rausgegeben werden, falls Caching im Spiel ist.

53

Persistenzschicht von MyTISM
MyTISM verwendet ein mehrschichtiges Persistenzkonzept, um Daten sicher und effizient zu
speichern. Ein zentrales Element ist dabei die Unterscheidung zwischen "Soft Delete" und "Hard
Delete" (Purge), die im Folgenden detailliert erläutert wird.

54

Löschen von Daten in MyTISM

Soft Delete
Standardmäßig werden Objekte in MyTISM nicht physisch aus der Datenbank gelöscht, sondern
lediglich als "gelöscht" markiert. Dies geschieht durch das Setzen eines Flags namens "Ldel" auf den
Wert TRUE. Dieser Mechanismus wird als "Soft Delete" bezeichnet.

Diese Objekte werden in den meisten Abfragen und Ansichten dann nicht mehr angezeigt. Admins
könnten diese Objekte einblenden. Sie werden dann normalerweise durchgestrichen dargestellt.

Vorteile:

• Datenwiederherstellung: Versehentlich gelöschte Objekte können von Admins leicht
wiederhergestellt werden.

• Datenhistorie: Gelöschte Objekte sind weiterhin mit ihrer kompletten Änderungshistorie inkl.
des Löschvorgangs in der Datenbank verfügbar, was für Audits oder Analysen nützlich sein
kann.

Nachteile:

• Speicherplatz: "Soft deleted" Objekte belegen weiterhin Speicherplatz in der Datenbank.

• Performance: Bei einer großen Anzahl von "soft deleted" Objekten könnte die Performance der
Datenbankabfragen beeinträchtigt werden, da die Tabellen größer sind, als sie sein müssten.

• Fehlerquelle: Bei selbst erstellen programmatischen Abfragen in der Datenbank oder beim
Traversieren von Objekten in Relationen muss man daran denken, gelöschte Objekte explizit
auszunehmen oder zu überspringen, wenn das gewünscht ist.

• Datenschutz: Reicht für personenbezogene Daten nicht zur Einhaltung von
Datenschutzbestimmungen wie der DSGVO aus.

Wiederherstellung von "Soft Deleted" Objekten

"Soft deleted" Objekte können über die MyTISM-GUI (sofern die Undelete-Action für den Benutzer
verfügbar ist und die gelöschten Objekte sichtbar sind) oder programmgesteuert über die
Methoden BO#undelete() bzw. BO#markUndelete() wiederhergestellt werden.

Hard Delete (Purge)
Im Gegensatz zum Soft Delete ermöglicht ein Hard Delete das endgültige Löschen von Objekten aus
der Datenbank. In MyTISM wird dieser Vorgang als "Purge" bezeichnet und ist nur dem Backend
und speziellen Backend-Diensten vorbehalten.

Anwendungsfälle:

• DSGVO-Konformität: Zum Löschen von Daten, die gemäß der Datenschutzgrundverordnung
(DSGVO) gelöscht werden müssen.

55

• Datenbereinigung: Zum Entfernen von alten, irrelevanten Daten, um Speicherplatz
freizugeben.


Purging ist unwiderruflich! Gelöschte Daten können nicht wiederhergestellt
werden!

Unterschiede zwischen Soft und Hard Delete im
Überblick

Feature Soft Delete Hard Delete (Purge)

Löschvorgan
g

Objekt wird als "gelöscht" markiert (Ldel
= TRUE)

Objekt wird physisch aus der Datenbank
entfernt

Wiederherst
ellung

Möglich Nicht möglich

Zugriff Standardmethode für Benutzer Nur für Backend und spezielle Dienste

Anwendungs
fälle

Standardlöschvorgänge DSGVO-Konformität, Datenbereinigung

Zusammenfassung
MyTISM bietet mit Soft Delete und Hard Delete (Purge) zwei Mechanismen zum Löschen von Daten.
"Soft Delete" ist die Standardmethode und ermöglicht die Wiederherstellung von Daten. "Hard
Delete" dient dem endgültigen Löschen von Daten und ist nur für spezielle Anwendungsfälle
vorgesehen.

56

Sprachunterstützung und
Internationalisierung

57

Einführung
MyTISM bietet eine durchgehende Unterstützung für verschiedene Locales, sowohl für die
Übersetzung von Texten und Namen als auch für Ein- und Ausgabe von Zahlen, Daten, etc.

Wo wird Mehrsprachigkeit unterstützt und wie
benutze ich sie?
Neben der direkten Benutzung in Programmcode mittels der Methoden L10n.msg() bzw.
L10n.applyL10n() gibt es weitere Stellen an denen die Mehrsprachigkeit unterstützt wird.

Im GUI-Client Solstice, an vom Benutzer bearbeitbaren Stellen:

• In den Benutzer-Login-Scripten. Beispiel:

<Configuration>
 [...]
 <Locale>de</Locale>
</Configuration>

• In den XML-Definitionen für Plugins in den Benutzer-Voreinstellungen.

• In den XML-Definitionen für Defaults in Benutzer-Voreinstellungen.

• In Report-Definitionen und in den Parametern von Formularen, Schablonen und Lesezeichen.

Im GUI-Client Solstice, interne Funktionalität:

• Ausgabe von Name und ElterPfad von Benannts im Navigationsbaum bzw. in
PolymorphicTemplateSelectionTreeModel.

In diesen "Texten" können Platzhalter $R{key} eingefügt werden. Diese werden dann automatisch
vor der "Benutzung" durch zum aktuellen Locale passende Texte ersetzt.

Wie wird die konkrete Zeichenkette für einen
Schlüssel gefunden?
L10nPackProviderI (z.Zt. de/ipcon/tools/L10n und de/ipcon/db/AbstractClient) halten benannte
L10nPacks bereit, welche die diversen Textbausteine in unterschiedlichen Sprachen enthalten,
gruppiert mittels entsprechender Schlüssel für jeden Textbaustein.

Beim Auflösen von $R{key}-Platzhaltern z.B. im Formularcode (und ebenso beim direkten Aufruf
der L10n.msg()-Methoden) wird eine - je nach Aufrufart bzw. -ort unterschiedliche, und bei den im
vorherigen Abschnitt aufgeführten Stellen, automatisch zusammengestellte - Liste der an dieser
Stelle beteiligten bzw. relevanten Objekte übergeben (Z.B. für Formulare das Formular-Objekt

58

selbst).

Mittels dieser übergebenen Objekte wird nun eine Liste von relevanten L10nPacks erstellt, in
denen mittels des Schlüssels "key" nach den angeforderten Textbausteinen gesucht wird. Wird ein
zum Schlüssel passender Textbaustein gefunden, wird seine zur gewünschten Sprache passende
Version zurückgeliefert.

 Schlüsselnamen dürfen nur Buchstaben, Zahlen, '_', '-', '.', '~' und '/' enthalten.

Welche L10nPacks gibt es und wie sind diese
organisiert? Wie wird bestimmt, welche L10nPacks
nach Texten durchsucht werden?
Die Benamsung bzw. Hierarchie der L10nPacks folgt in der Regel der Klassen- bzw. Paketstruktur
der Java-Klassen. In den meisten Fällen bestimmen die Java-Klassen der beteiligten Objekte und die
Java-Pakete denen diese angehören die zu durchsuchenden L10nPacks.


L10nPack-Namen dürfen nur Buchstaben, Zahlen, '_', '-' und '.' enthalten, wobei '.'
das Trennzeichen zum Aufsplitten der Namen ist.

Beispiel: Ein Objekt der Klasse "de.ipcon.form.FText" will den Textbaustein mit Schlüssel
"eineNachricht" in der aktuellen Sprache ausgeben. In diesem Fall werden - sofern vorhanden - die
L10nPacks "de.ipcon.form.FText", "de.ipcon.form.FPanel" (FText leitet sich von FPanel ab),
"de.ipcon.form", "de.ipcon" und "de" in dieser Reihenfolge nach einer zum Schlüssel passenden
Version des Textes durchsucht.

Web

Abweichend hiervon ist in Grails und Cauldron aktuell historisch bedingt noch eine andere
Namensgebung üblich und es gibt kein eigentliches Mapping mit Automatismen für Klassen oder
Entitäten.

In Grails gibt es oft nur ein einzelnes Bundle Grails, das aber auch aufgeteilt werden kann. Die
Namensgebung lautet dann bspw. Grails.checkout oder Grails.user.settings.

In Cauldron besteht hier prinzipiell freie Namenswahl, neue Projekte sollten sich aber ebenfalls an
das Paketnamensschema halten.

Welches sind die "beteiligten bzw. relevanten
Objekte"?
Dies ist unterschiedlich und hängt davon ab, wo und wie die L10n-Funktionalität genutzt wird, z.B.:

• Beim direkten Aufruf von L10n.msg() wird normalerweise automatisch die aufrufende Klasse
ermittelt und als das (einzige) beteiligte Objekt übergeben.

• Bei Benutzung von $R{key}-Platzhaltern im Parameter von Formularen, etc. wird die Klasse des

59

im Formular, der Schablone oder im Lesezeichen dargestellten BOs sowie die Klasse des
Strukturelements (Formular.class, etc.) selbst übergeben.

Im Normalfall wird die Liste der L10nPacks für eine Klasse einfach nach der im vorherigen
Abschnitt beschriebenen Methode (Klassen + Pakete) erstellt. Ist für eine Klasse aber ein sog.
L10nPathCompilerI beim L10n registriert, so bestimmt dieser, welche L10nPacks für die
entsprechende Klasse in die Liste aufgenommen werden (siehe z.B. "FormularPathCompiler" in
Formular.nrx).

Genauere Informationen finden sich bei den entsprechenden Aufrufen von L10n.applyL10n() bzw.
L10n.msg() (bei letzterem nur selten, da dort fast nie ein expliziter "path" übergeben wird und fast
immer die oben erwähnte Automatik benutzt wird) im Quellcode von MyTISM. L10n.compilePath()
enthält weitere Informationen darüber, wie die Liste der zu durchsuchenden L10nPacks
zusammengestellt wird.

Wo kommen die (Daten der) L10nPacks her?
Die Texte/Daten für die L10nPacks werden z.Zt. aus zwei Quellen gezogen. Die L10n-Klasse lädt ihre
Daten aus Dateien …/resources/*.properties die in den Quellcode-Verzeichnissen liegen und beim
Bauen ebenfalls in die JARs eingebunden werden. Daneben lädt der Server noch die in der
Datenbank befindlichen L10nBundles in seinen L10nCache.

Die Texte der *.properties-Dateien werden alle "von Hand" angelegt und bearbeitet. Die
L10nBundles, etc. werden teilweise automatisch generiert, können aber auch von Hand angelegt
und bearbeitet werden.

Für jede im Schema definierte Entität, Beispiel "de.ipcon.db.core.Benannt", werden einige L10n-
Daten automatisch angelegt und "gewartet". Diese sind im Beispiel zuerst das L10nBundle
"de.ipcon.db.core" mit den L10nResourcen "_Benannt" sowie "_Benannt-s" (Name/Singular und
Plural der Entität), L10nResources für die Ordner, also hier "Interna" (FIXME ggf. weitere) sowie
L10nResources für jedes Attribut der Entität also hier "Name", "Beschreibung" usw.

Desweiteren wird für jede Entität noch ein eigenes Bundle, im Beispiel "de.ipcon.db.core.Benannt",
angelegt und dort werden ebenfalls noch einmal wie oben für alle Attribute L10nResources
angelegt.

Diese L10nBundles, bzw. deren L10nEntries und L10nResources, werden bei jedem Serverstart
überprüft, ob Entitäten oder Attribute hinzugekommen sind - diese werden dann automatisch
angelegt - bzw. weggefallen sind - dort werden dann für weggefallene Attribute automatisch
entsprechende, ehemals gebrauchte L10nEntries und L10nResources entfernt.

In neueren Projekten werden Daten aus nrx/[…Projektverzeichnis…]/resources/l10n/[…Projekt-
Package…].bo_[ISO-Kürzel] automatisch importiert. In diesen, von Hand angelegten Dateien,
dürfen (bzw. zumindest sollten) sich nur Schlüssel-Text-Paare für im Schema definierte Entitäten
und deren Attribute befinden. Ansonsten werden die "überzähligen" Texte bei jedem Serverstart
erst angelegt, und dann, da es keine entsprechenden Entitäten bzw. Attribute (mehr) gibt, direkt
wieder gelöscht.

"Freie" Texte (z.B. solche für Titel/Texte in Formularen) sollten - selbst wenn sie im Prinzip nur für

60

eine Entität benutzt werden - in einem eigenen Paket
nrx/[…Projektverzeichnis…]/resources/l10n/[…Projekt-Package…]_[ISO-Kürzel] untergebracht
werden.

Genauere Informationen finden sich in L10nBundle.initEnvironment() und den dort benutzten
Methoden.

L10n und das Anführungszeichen bzw. Apostroph

Die Verwendung von Anführungszeichen oder Apostrophen in Übersetzungen (in properties- oder
Bundles-Dateien im Verzeichnis resources/l10n/) kann zu Problemen führen, insbesondere wenn
diese in XML-Texten verwendet werden und unbeabsichtigt Abschnitte beenden, die nicht beendet
werden sollten. Dies tritt häufig auf, wenn es um die Definition von Tabellenspalten geht.
Besondere Vorsicht ist geboten, wenn es um Übersetzungen von Entitäts- und Attributnamen geht,
da diese oft an solchen Stellen eingesetzt werden.

Um solche Probleme zu vermeiden, empfiehlt es sich, anstelle der „einfachen“ Zeichen ' und ", die
ursprünglich noch aus der Zeit der Schreibmaschinen stammen und lediglich eine vereinfachte
Darstellung dieser Zeichen bieten, die schöneren und eigentlich korrekten typographischen
Zeichen ’ (erreichbar über AltGR+') sowie „ (AltGr+V) und “ (AltGr+B) zu verwenden. Diese
Zeichen werden in der Regel nicht als Steuerzeichen zur Abtrennung verwendet und tragen somit
zur Vermeidung von unerwünschten Effekten bei.

61

https://www.uebersetzung-morlot.de/franzoesische-sonderzeichen/

Wichtige Klassen
de.ipcon.tools.L10n

Die zentrale Klasse. Enthält u.A. die msg()-Methoden die zu einem gegebenen Key die zum
gewünschten/aktuellen Locale passende Version der entsprechenden Zeichenkette liefern.
Enthält auch diverse Methoden um Format-Objekte zum formatieren von Zahlen, Daten, etc. zu
erhalten.

de.ipcon.db.core.L10nBundle

Sammlung von L10nResources.

de.ipcon.db.core.L10nResource

Entspricht grob einer Zeichenkette welche in unterschiedlichen Sprachen ausgegeben werden
können soll. Hat einen oder mehrere L10nEntries.

de.ipcon.db.core.L10nEntry

Konkrete Version der Zeichenkette für ein bestimmtes Locale (grob: eine Sprache).

62

Eingabe von L10n-Daten
FIXME Stichworte

neues Bundle anlegen (de.venice) bzw. in einem bestehenden Bundle (de.venice.bo) was
hinzufuegen ⇒ schauen, dass das Bundle auch Preloaded wird und auch die PfadPos setzen (0).
Wenn trotzdem ein neuer Eintrag nicht direkt gefunden wird, dann kann es noetig sein den Server
durchzustarten. Das kann der Fall sein, wenn das Bundle erstmalig auf Preload und/oder PfadPos
gesetzt wird.

Einfaches Hochkomma muss "escaped" werden ⇒ doppelt schreiben

$R-Tags in Formularen, etc.: Suche nach title=", label=", text=".

63

Die Formularengine des Solstice
Clients

64

de.ipcon.form
Nachfolgende Dokumentation behandelt den Aufbau eines sogenannten Formulars im
de.ipcon.form Package des MyTISM Frameworks. Sie soll den Entwickler in die Lage versetzen,
Wünsche des Anwenders an die grafische Oberfläche umzusetzen. Im Gegensatz zu Web-
Oberflächen sind diese für den Anwender viel effektiver und schneller bedienbar als die etwas
generischeren und graphisch meist viel ansprechenderen, aber dennoch umständlich zu
bedienenden Web-Oberflächen. Allerdings ist das Abstraktionsniveau im grafischen Client etwas
geringer, um schneller zum Ergebnis zu kommen - manchmal ist es besser, den ein oder anderen
Wunsch eines Anwenders zugunsten einer saubereren oder aber auch für eingeschränkte Benutzer
(sei es technisch (niedrige Farbe, langsamer Rechner) oder auch körperlich (Farbenblindheit,
Kurzsichtigkeit)) bedienbaren Lösung abzulehnen.

Hintergrund
Das Formularframework bzw. die Engine, die die Formulare aufbaut, hat zwei Ziele: Flexible
Formulare und eine flexible Verwaltung dieser Formulare. Das HTML-Format bzw. dessen
Vorgänger SGML bzw. XML haben mit ihrem Markup-Konzept einen entscheidenden Denkanstoß
zur Entwicklung der jetzigen Implementation geliefert. Angereichert mit einer Meta-Ebene, die aus
dem Datenbank-Backend MyTISM kommt und somit einen schnellen und effizienten Zugriff auf die
Formulare gestattet sowie die Synchronisation der Formulare realisiert. Im folgenden werden die
Objekte einzeln ausführlich vorgestellt, ihre Eigenschaften und ihre Verwendung dokumentiert.
Alle Objekte außer den Lesezeichen haben die Eigenschaft, in bestimmten Kontexten als Auswahl
zur Verfügung zu stehen, sei es, um ein neues Objekt zu erzeugen oder ein bestehendes anzuzeigen.
Das Verfahren, diese Auswahl zu generieren, wird ebenfalls beschrieben.

Das Formular-Objekt
Das Formular-Objekt hat die Aufgabe, eine Eingabemaske für ein Objekt einer bestimmten BO-
Klasse zu beschreiben. Das de.ipcon.form Package enthält die notwendigen Methoden, um eine
solche Eingabemaske bestehend aus Oberflächenelementen wie Textfelder, Popuplisten und
ähnlichem zu erzeugen und verwalten. Es stellt eigentlich das wichtigste und gleichzeitig das
komplizierteste Objekt des Formularframeworks dar.

Eigenschaften

Das Formular-Objekt hat im wesentlichen folgende Eigenschaften:

1. Name: Eine klar abgrenzende Bezeichnung, die auch im Kontextmenu des jeweiligen Objektes
erscheint.

2. Beschreibung: Eine etwas ausführlichere Beschreibung, durchaus als Platz für Bemerkungen
wie den Verweis auf spezielle Versionen oder Spezifika. Sie wird dem Benutzer nicht in der GUI
präsentiert und ist ausschließlich den Entwicklern vorbehalten.

3. Elter: Ein Verweis auf die ID des Strukturelements (meist ein Ordner oder eine Gruppe), unter
dessen Repräsentation im Menubaum dieses Element absortiert wird. Wird gesetzt beim
Drag’n’Drop im NavigationTree in der GUI.

65

4. IstAutomatik: Ein Wahrheitswert, der anzeigt, ob das Formular direkt aus dem
Formulargenerator stammt. Falls Sie ein Formular abändern, achten Sie bitte darauf, daß dieser
Wert false ist, sonst wird beim nächsten Schema-Update das Formular neu erstellt; der
NavigationTree setzt es beim 'Move' dieses Flag automatisch auf false, um eine Fehlbedienung
zu vermeiden.

5. Parameter: Hier steckt der Source des eigentlichen Formulars. Im folgenden wird der Inhalt
dieser Eigenschaft ausführlich beschrieben.

6. BOTyp: Ein Verweis auf den Typ des BO (selbst natürlich ebenfalls ein BO), welches mit diesem
Formular angezeigt werden kann. [fixme: Polymorphie?]

7. Gruppen: Ein Mehrfach-Verweis auf die Gruppen, die dieses Formular benutzen sollen.

8. Schablonen: Ein Mehrfach-Verweis auf die Schablonen-Objekte, die direkten Gebrauch von
diesem Formular machen.

9. Priorität: ein 32bit signed Integer, der die Priorität des Formulars im Falle einer mehrfachen
Auswahl von Formularen für ein Objekt festlegt und damit die Präferenz in diesem Fall festlegt.

Auswahl

Die Auswahl eines Formulars wird aufgrund folgender Regeln getroffen:

1. Zunächst werden alle passenden (gleicher BOTyp [fixme: Polymorphie]) Formulare erfragt,
deren Priorität gesetzt ist und einer der eigenen Gruppen zugeordnet ist. Beim Benutzer Admin
werden als Ausnahme auch diejenigen Formulare mit einbezogen, die keine Priorität haben
(diese Mechanismus wird in einer der nächsten Versionen ausgebaut und ist damit als obsolet
deklariert!).

2. Diese passenden Formulare werden der Priorität nach absteigend geordnet und dem Benutzer
ggfs. per Kontextmenu zur Verfügung gestellt. Ein Doppelklick oder adäquate Aktion öffnet das
nach dieser Sortierung am höchsten priorisierte Element. Die momentane Implementation
ersetzt Formulare gleicher Priorität ohne eine deterministische (oder vielmehr eine
dokumentierte Deterministik) oder vorhersehbare Präferenz. Daher bitte ich unbedingt auf
eine klare Priorisierung zu achten. Der Zahlenraum der Priorität bietet genügend Spielraum: ca.
-2 bis 2 Milliarden.

Definition

66

Fehler und Ursachen
Einige Fehler denen ich bei der MyTISM-Entwicklung schon begegnet sind und deren Ursachen
bzw. Lösungsmöglichkeiten:

Compiler-Meldung "Object cannot be null"
BOs brauchen einen Konstruktor (ohne Argumente); es wird nicht automatisch einer gebaut oder
der der Superklasse benutzt. BO-Klassen duerfen nicht "abstract" sein

bi-Tabelle kann nicht erstellt werden (nachdem die
Datenbank gedropped und recreated wurde)
".checked*"-Dateien im Projektverzeichnis löschen.

Compiler-Meldung "Object bla is null but shouldn’t"
(sic)
Beispiel: "Zustellversuch" hängt an "Sendeauftrag". Neuer Zustellversuch wurde angelegt, in
Transaction included und an Sendeauftrag angehängt. Dumm nur: Sendeauftrag war nicht in
Transaction included! FIXME: Hmm … das war aber wohl doch nicht das Problem :-(

67

Synchronisation der
Strukturelemente

68

Das Formular "DateiSystemSync"
Das Benutzerhandbuch enthält bereits einen Abschnitt zu diesem Thema; ggf. sollten diese
zusammengeführt werden.

FIXME! (werde später noch ein bisschen was dazu schreiben - sw) - anhand was wird rein- bzw.
rausgesynct - Konventionen Dateiname - wofuer Tid - …

69

Volltextsuche
Die Volltextsuche erlaubt die einfache und schnelle Suche nach gegebenen Suchbegriffen über alle
in der MyTISM-Datenbank gespeicherten Objekte. Informationen zur allgemeinen Konfiguration
und Bedienung finden sich in der MyTISM-Benutzerdokumentation. In diesem Kapitel befinden
sich noch einige nur für Entwickler interessante Informationen, insb. zur Konfiguration der Suche
im Schema und der Benutzung von Volltextsuche-Queries in Programm- oder Skriptcode.

70

http://www.mytism.de/docs/user.html#volltextsuche

Konfiguration im Schema

Berücksichtigte Daten
Standardmässig werden, mit wenigen Aussnahmen, die BOs aller Entitäten für die Volltextsuche
aufbereitet. Von diesen BOs werden standardmässig die Inhalte alle Attribute, wiederum mit
einigen Aussnahmen, in den Suchindex aufgenommen.

Berücksichtigte Entitäten

 vgl. de/ipcon/db/fulltext/compass/SchemaMappingBuilder.isEntityIgnored()

Explizit immer ausgeschlossen werden die BOs nicht persistenter Entitäten, sowie die BOs der
Entiäten BT, BP und BX.

Durch explizite Angabe von indexed="no" im Schema ist es möglich, weitere Entitäten von der
Indexierung auszunehmen.

Beispiel:

 <Entity name="InterneEntitaet" extends="BO" plural="InterneEntitaeten">
 <fulltext indexed="no"/>
 <attr name="KryptischerString"/>
 </Entity>

FIXME Infos zum "Cascading", (Nicht-)Indexierung von Unterklassen

Berücksichtigte Attribute

 vgl. de/ipcon/db/fulltext/compass/SchemaMappingBuilder.isAttributeIgnored()

Standardmässig ausgeschlossen werden die Daten von

• Relationen-Attributen (sowohl Single als auch Many)

• Attributen mit (Java-)Typ Boolean, Date oder Number

• virtuelle Attribute

Durch explizite Angabe im Schema ist es jedoch möglich, entsprechende Attribute von bestimmten
Entitäten doch in den Index aufzunehmen. Andererseits können auch normalerweise indexierte
Attribute explizit von der Indexierung ausgenommen werden.

Beispiel:

71

 <Entity name="InterneEntitaet" extends="BO" plural="InterneEntitaeten">
 <attr name="Name">
 <attr name="InteressantesDatum" type="DateTime">
 <fulltext indexed="yes"/>
 </attr>
 <attr name="KryptischerString">
 <fulltext indexed="no"/>
 </attr>
 </Entity>

Wird für Relationen-Attribute (sowohl Single- als auch Many-Relationen) indexed="yes" angegeben,
ist das Resultat, dass Objekte der "Elter"-Klasse (die, die das Relationen-Attribut enthält) auch als
Suchtreffer gefunden werden, wenn ein Suchbegriff "nur" auf eines der "Kind"-Objekte (die in der
Relation enthaltenen Objekte) zutrifft.

Beispiel:

 <Entity name="Elter" extends="BO" plural="Eltern">
 <attr name="Name">
 <attr name="Kinder" type="Kind" relation="1-n">
 <fulltext indexed="yes"/>
 </attr>
 </Entity>

 <Entity name="Kind" extends="BO" plural="Kinder">
 <attr name="Name">
 </Entity>

Es existiert ein Elter "Elter1" mit Kindern "Kind1" und "Kind2". Wird jetzt z.B. im "Eltern"-
Lesezeichen nach "Kind1" gesucht, so wird das Objekt "Elter1" als Ergebnis geliefert, obwohl der
Suchbegriff "Kind1" eigentlich nur in einem der "Kinder"-Objekte vorkommt.

Weitere Einstellungen im Schema

analyzed


vgl. de/ipcon/db/fulltext/compass/SchemaMappingBuilder.buildScalarConfig()
sowie das entsprechende Kapitel in der Compass-Dokumentation

Für einzelne Attribute kann im Schema definiert werden, ob die entsprechenden Inhalte bei der
Indexierung "analysiert" werden sollen oder nicht.

Ein Text wie "Dies ist ein Attributwert" wird normalerweise nicht in dieser Form im Index abgelegt,
sondern in seine einzelnen Bestandteile (normalerweise "Wörter", d.h. durch Whitespace
abgetrennte Tokens) aufgeteilt. Auch werden einige sehr häufig vorkommende Wörter (sog.
"Stopwords") entfernt.

72

http://www.compass-project.org/docs/2.2.0/reference/html/core-searchengine.html#core-searchengine-analyzers

Durch diese Behandlung ist es möglich, dass bei der Suche nach z.B. "Dies" das Objekt mit dem
obigen Attributwert gefunden wird.

Wäre der Wert nicht "analysiert" worden, so wäre nur die gesamte Zeichenkette genau in dieser
Form im Index abgelegt und das Objekt würde nur bei Eingabe genau von "Dies ist ein
Attributwert" (oder ggf. noch bei Benutzung von Platzhaltern oder Ähnlichkeitssuche) gefunden,
nicht aber nur bei Eingabe von "Dies".

Standardmässig werden alle Attribute mit (Java-)Typ String "analysiert"; alle anderen Attribute
(insb. z.B. Zahlen) nicht. Im Normalfall ist diese Einstellung wohl sinnig; in Einzelfällen (z.B.
vielleicht wenn es sich um eine Bezeichnung handelt, die nur genau in der eingegebenen Form
gefunden werden soll) kann das Verhalten aber durch eine explizite Angabe beim Attribut geändert
werden.

Beispiel:

 <Entity name="InterneEntitaet" extends="BO" plural="InterneEntitaeten">
 <attr name="Name">
 <attr name="Typenbezeichnung">
 <fulltext analyzed="no"/>
 </attr>
 </Entity>

boost

Sowohl für Entitäten als auch für einzelne Attribute kann ein "Boost"-Wert im Schema angegeben
werden. Dieser dient dazu, einen Treffer für die entsprechende Entität oder das entsprechende
Attribut höher oder niedriger zu bewerten und damit im Ranking der Suchergebnisse weiter nach
vorne oder hinten zu plazieren. Da jedoch z.Zt. in MyTISM kein Ranking von Suchergebnissen
benutzt wird, ist die Angabe dieses Wertes z.Zt. weder erforderlich noch sinnvoll. :toc: left :toc-title:
Inhaltsverzeichnis :toclevels: 2 :icons: font

73

Formularelemente

74

Action
Name Erlaubte Werte Beschreibung

acceleratorKey String: z. B. "ENTER", "control
shift F5", …

accKey siehe acceleratorKey

animation Boolean: true, false Während die Action ausgeführt
wird, eine Ladeanimation über
das Formular legen.

cmd String Funktionsname, der z. B. von
Buttons gerufen werden kann.

contextMenu Boolean: true, false

formElementSync Boolean: true, false

icon String: z.Bsp.
icon="20x20/New.gif",
icon="image/remove_red_eye.sv
g" oder
icon="image/remove_red_eye.sv
g@5085dc" (mit Farbangabe in
hex; nur für SVGs verfügbar)

Pfad zum gewünschten icon.

initialState Boolean: true, false Wird zu Boolean Action mit
dem angegebenen
Anfangszustand. Dieser schaltet
bei jeder Ausführung der Action
um. Wird aktuell nur vom
ToggleButton unterstützt.

local Boolean: true, false

menu String

merge Boolean: true, false Actions können
zusammengeführt oder
überschrieben werden.

mnemonicKey

name String Name der Action. Optional -
wenn nicht angegeben, gleich
cmd. Per default Button-Titel.

offEDT Boolean: true, false Action in neuem Thread
ausführen.

priority int: 0

progressShowDelay int: 1000

restoreFocus Boolean: true, false

75

Name Erlaubte Werte Beschreibung

shortDescription Kurze Beschreibung. Wird als
Tooltip angezeigt.

showLabel Boolean: true, false Den Namen der Action
unterhalb eines ggf.
vorhandenen Icons anzeigen.

smallIcon

toolBar Leerer String. Bsp.: toolBar="" Wird hinzugefügt, falls die
Action in der Standard-ToolBar
neben einer Table bzw. im Falle
von topMdiOnly in der
"obersten" Toolbar erscheinen
soll.

topMdiOnly Boolean: true, false Bei true wird die Action auf die
oberste Toolbar gedrückt, d.h.
die des Clients (bzw. im
SDI/native window manager
mode die des Objektfensters).

availableOn
Liefert ein hier angegebenes Skript true zurück, wird die Action angezeigt, bei false nicht.


Die Bedingung für availableOn wird nur einmal und dann sehr früh evaluiert (bei
der Entscheidung ob die Komponente überhaupt gebaut werden soll)

enabledOn
Die Action ist die ganze Zeit sichtbar und jenachdem ob ein hier angegebenes Skript true oder false
zurückliefert, kann die Action angeklickt werden bzw. is ausgegraut.


enabledOn wird laufend, d.h. bei jedem Statuswechsel, evaluiert (nicht wie bei
availableOn).

initialState
Erfüllt die gleiche Aufgabe wie das Attribut initialState. Nur das hier ein Skript zur Bestimmung
des Anfangszustandes angegeben wird.

longDescription
Wenn man mal mehr (formatierten) Text zur Erklärung der Action anzeigen möchte (auch HTML
ist möglich):

76

<Action cmd="resetData" name="Daten resetten" shortDescription="Daten zuruecksetzen"
toolBar="" accKey="control R">
 <onAction language="groovy">rootBO.doMagic()</onAction>
 <longDescription><![CDATA[<html>
 Folgende Voraussetzungen müssen erfüllt sein, damit die Daten der selektierten
Zeilen zurückgesetzt werden können:

 Der Benutzer ist Mitglied der "Verwaltung" oder ein ADMIN
 Es ist mindestens eine Zeile ausgewählt

 </html>]]></longDescription>
</Action>

onAction
Hier wird das Script definiert, welches für die jeweilige Action ablaufen soll.

77

BooleanInputComponent
Attribute: FIXME

Name Erlaubte Werte Beschreibung

class

displayProperty DEPRECATED siehe property

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

text

78

Border
Attribute:

Name Erlaubte Werte Beschreibung

bevel-highlight Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

bevel-highlightInner Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

bevel-highlightOuter Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

bevel-shadow Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

bevel-shadowInner Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

79

Name Erlaubte Werte Beschreibung

bevel-shadowOuter Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

bevel-type LOWERED, RAISED Abschrägung.

beveled highlight, highlightInner,
highlightOuter, shadow,
shadowInner, shadowOuter

debug

editable

etched-highlight Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Hervorhebung. Muss immer
zusammen mit etched-shadow
verwendet werden.

etched-shadow Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Schattierung. Muss immer
zusammen mit etched-
highlight verwendet werden.

etched-type String: LOWERED, RAISED Begrenzung als Vertiefung oder
Erhöhung darstellen.

etched Boolean: true, false

fontSize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

fontStyle String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

implied

line-color Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

line Boolean: true, false

maximumSize

maxSize

minimumSize Alias. Siehe minSize

80

Name Erlaubte Werte Beschreibung

minSize Tupel: (horizontal, vertikal).
Beispiele: minSize="4c, 5c";
minSize="4c,"; minSize=",5c"

Gibt die minimale Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

missingPropertiesPolicy

name String Um das Form-Element
innerhalb des Formulars
referenzieren zu können

preferredSize Alias. Siehe prefSize

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

title-justification String: LEFT, CENTER, RIGHT

title-position String: NORTH, SOUTH, WEST, EAST

title String Überschrift für die durch die
Border abgegrenzten Inhalte.

toolBar-background Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

toolBar-floatable

toolBar-layout

toolBar-orientation String: HORIZONTAL, VERTICAL

toolBar-position String: NORTH, SOUTH, WEST, EAST Wenn toolBar-position
verwendet wird, wird toolBar-
orientation automatisch
gesetzt.

toolBar-rollover

81

Name Erlaubte Werte Beschreibung

toolBar ToolBar wird automatisch aktiv,
wenn Elemente innerhalb der
Border (z.Bsp. FTable) Actions
für die ToolBar bereitstellen.

topMdi

82

Button
Attribute: FIXME

Name Erlaubte Werte Beschreibung

action String cmd-Attribut der Action, die bei
Klick auf den Button ausgeführt
werden soll.

background Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

defaultButton Boolean: true, false Falls true, wird der Button
aktiviert, wenn der Container
den Fokus hat und z.B. die
ENTER Taste gedrückt wurde.

fontSize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

fontStyle String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

foreground Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

hAlign

icon String: z.Bsp.
icon="20x20/New.gif",
icon="image/remove_red_eye.sv
g" oder
icon="image/remove_red_eye.sv
g@5085dc" (mit Farbangabe in
hex; nur für SVGs verfügbar)

Pfad zum gewünschten icon.

multiClickThreshold Integer (750ms) Spezifiziert innerhalb welchen
Zeitraums mehrfaches Klicken
des Buttons als ein einfaches
Klicken interpretiert wird

text String Beschriftung des Buttons.

83

Name Erlaubte Werte Beschreibung

vAlign String: TOP, CENTER, BOTTOM,
z. B. vAlign="TOP"

Bestimmt die vertikale
Ausrichtung des Textes
innerhalb des Elements. Die
Höhe des Elements muss größer
sein als eine normale
Zeilenhöhe, was z. B. durch
Setzen des Attributs prefSize
erreicht werden kann.

84

Canvas
Attribute: FIXME

Name Erlaubte Werte Beschreibung

toolTipText String. Text, der angezeigt wird, wenn
man den Mauszeiger über das
Element hält.

85

Chart
Komponente zur Darstellung von Diagrammen in Formularen. Die zugrundeliegende Bibliothek ist
"JFreeChart".

Derzeit werden von unserer direkten Implementierung folgende Diagramme unterstützt:

• timeSeriesChart

• stackedXYAreaChart

• scatterPlot

• xYAreaChart

• xYLineChart

• xYStepAreaChart

• xYStepChart

Darüber hinaus kennt JFreeChart noch einige andere Diagramme (z.B. Torten-Diagramme).

Über das Kontextmenü stehen weitere Funktionen wie Export als Bild, Drucken,
Einstellungsmöglichkeiten, etc zur Verfügung.

Beispiel unter Verwendung unserer direkten Implementierung:

Das folgende Beispiel dient der Erklärung des Aufbaus. Es werden die ZeiterfassungsEinträge eines
Mitarbeiters dargestellt, mit der jeweiligen Anwesenheitsdauer in y-Richtung.
Der JFreeChartBuilder wird als builder an das buildScript übergeben. Über diesen können dann die
verschiedenen Diagramme gezeichnet werden. Innerhalb der Closure steht das anchor-Objekt zur
Verfügung, welches das im Formular geöffnete BO referenziert.

86

87

<Chart>
 <buildScript><![CDATA[
 builder.xYLineChart(title:'oneTitle', xAxisLabel:"EK", yAxisLabel:'VK') {
 def zes = anchor.ZeiterfassungsEintraege
 antiAlias=true
 borderVisible=false
 borderPaint='#c0c0c0'
 plot {
 tableXYDataset() {
 rows = {
 (0..zes.size()-1).each{ it }
 }
 x = {
 it
 }
 series(name: anchor.kontakt.describe()) {
 values = {
 zes.values().getAt(it).Anwesenheitsdauer
 }
 stroke = 2
 paint = '#4c1e67'
 }
 }
 }
}
]]></buildScript>
</Chart>

Beispiel der generischen Verwendung (Prüfserie hat Einzelprüfungen mit deren Messwerten):

88

<Chart>
 <buildScript><![CDATA[
 import org.jfree.chart.ChartFactory
 import org.jfree.chart.ChartPanel
 import org.jfree.chart.JFreeChart
 import org.jfree.chart.plot.PlotOrientation
 import org.jfree.data.category.DefaultCategoryDataset

 def pserie = builder.anchor

 // dataset definieren
 def dataset = new DefaultCategoryDataset()
 pserie.getEinzelpruefungen().values().sort{ it.getPosition() }.each{
 dataset.addValue(it.getFeinheitNm(), 'FeinheitNm', it.getPosition())
 dataset.addValue(it.getElastizitaet(), 'Elastizitaet', it.getPosition())
 dataset.addValue(it.getHeissluftschrumpfS130(), 'HLS130', it.getPosition())
 }

 // Chart generieren
 JFreeChart chart = ChartFactory.createLineChart(
 'Messwerte der Einzelpruefungen',
 'Position','Skala',
 dataset,
 PlotOrientation.VERTICAL,
 true, true, false)
return chart
]]></buildScript>
</Chart>

Attribute: FIXME

Name Erlaubte Werte Beschreibung

closed Boolean: true, false

print Boolean: true, false

property

props Boolean: true, false

save Boolean: true, false

toolTips Boolean: true, false

zoom Boolean: true, false

Subelemente

onClick
Script, an das vorab aufbereitete Click-Events auf Elemente innerhalb der Chart weitergeleitet
werden.

89

Existiert eine onClick subnode, werden klickbare Elemente innerhalb der Chart zudem
gehighlighted, damit der Benutzer einen visuellen Hinweis hat, dass eine Interaktion möglich ist.

Verfügbare Variablen:

• row, column : Keys bzw. Labels, welches die Identifizierung einer Bar in einer BarChart
ermöglichen

• section : Key bzw. Label, welches die Identifzierung eines Abschnitts in einer Ring- oder
PieChart ermöglicht.

Um etwas mit den Daten zu tun, die zu dem angeklickten Element gehören, empfiehlt es sich, eine
Map mit den Keys und den Daten im Kontext-Binding des Groovy-Scripts zu hinterlegen (z.Bsp. im
onConstruction der umgebenden View).

Alternativ können die keys / labels aber auch als Filter interpretiert werden, und als Query in
einem zu öffnenden Lesezeichen gesetzt werden (als Parameter mit Namen query beim Öffnen des
LZ übergeben), siehe Beispiel unten.

<Chart>
 <buildScript>[...]</buildScript>
 <onClick><![CDATA[
 import de.ipcon.tools.date.DateTimeTools

 def bkm = ctx.getBOLoader().getBOByAttr(Lesezeichen, 'Tid', 'MCS_Rechnungen')
 // re-construct the month range from the column label
 def month = DateTimeTools.getFirstDayOfMonth(L10n.parseDate(column, 'MM/yy'),
true)
 def presetQuery = "[Belegdatum >= '${L10n.formatISODate(month)}'"

 ctx.openView(bkm, [query: presetQuery.toString()])
]]></onClick>
</Chart>

90

CheckBox
Die Checkbox kann benutzt werden, um Boolean-Werte zu beeinflussen.

Attribute:

Name Erlaubte Werte Beschreibung

class

debug

displayProperty DEPRECATED siehe property

editable Boolean: true, false false verhindert das Editieren
des Feldes. Das Feld WIRD
NICHT ausgegraut.

implied

maximumSize

maxSize

minimumSize Alias. Siehe minSize

minSize Tupel: (horizontal, vertikal).
Beispiele: minSize="4c, 5c";
minSize="4c,"; minSize=",5c"

Gibt die minimale Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

missingPropertiesPolicy

name String Um das Form-Element
innerhalb des Formulars
referenzieren zu können

preferredSize Alias. Siehe prefSize

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

91

Name Erlaubte Werte Beschreibung

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

text String Text, der zusätzlich hinter der
Checkbox angezeigt wird.

triState Boolean: true, false Wenn hier true gesetzt ist, kann
das Element drei Zustände
annehmen: true, false und null.
Ansonsten nur true und false.
Wenn false, kann Null nicht
mehr ausgewählt werden. Kann
durch eine Angabe im Schema
bereits definiert werden.

92

ComboBox


Die API-Dokumentation enthält ebenfalls weitere Informationen zu dieser
Komponente.

Wie in dem Bereich über Widgets bereits gezeigt, kann eine ComboBox direkt auf ein property
zeigen, woraufhin alle möglichen BOs angezeigt werden.

Beispiel:

Will man programmatisch eigene Auswahlmöglichkeiten anbieten kann man das über das
choiceSkript machen:

...
<ComboBox property="FilterZeitraum" e-label="$R{Zeitraum}" chooseOnly="true"
nullable="false">
 <choiceScript>
 // Title: Value
 ['letzten 2 Tage' : '2Tage',
 'letzten 7 Tage' : '7Tage',
 'letzten 30 Tage' : '30Tage',
 'letzten 60 Tage' : '60Tage',
 'letzten 100 Tage' : '100Tage',
 'letztes halbe Jahr': 'HalbesJahr',
 'letztes Jahr' : 'LetztesJahr',
 'Alle' : 'Alle']
 </choiceScript>
</ComboBox>
...

Attribute

Name Erlaubte Werte Beschreibung

autoSelect String: first/last/firstNonNull Gibt an welches Element als
default ausgewählt werden soll.

chooseOnly Boolean: true, false Wenn true, dürfen keine
eigenen Werte in das Feld
eingetragen werden.

displayFormat DEPRECATED siehe format

displayProperty DEPRECATED siehe property

format String (CBOFormat). Legt fest, wie das BO für die
Anzeige im Dropdown-Menü
und im Feld formatiert ist. Bsp:
"Id': 'Name"

93

Name Erlaubte Werte Beschreibung

nullable Boolean: true, false Wenn false wird null nicht als
mögliche Auswahl angeboten.

nullChoiceTitle String Wird angezeigt, wenn nichts
ausgewählt wurde. Gilt sowohl
für das Feld als auch für den
Eintrag im Dropdown-Menü,
der den leeren Wert
repräsentiert.

property

relationName DEPRECATED

selectEntity String Name der Entität, deren
Objekte hier zur Auswahl
angeboten werden sollen.

selectOutOf String Name der Relation, aus der
Objekte zur Auswahl angeboten
werden sollen.

sortBy String Name des Attributes, nach dem
sortiert werden soll.

whereClause String (OQL) Optionaler Filter für im Attribut
selectEntity gesetzte Entität im
OQL-Format.

showId Boolean: true, false Wenn true, wird die Id jedes
(BO-)Elements in eckigen
Klammern hinter dem Element
angezeigt.

suppressDuplicatesInNonRelatio
nMode

Boolean: true, false Wenn true, werden für
Comboboxen, die keine Relation
anzeigen, Duplikate in der
Auswahlliste verhindert, indem
die Id jedes (BO-)Elements in
eckigen Klammern hinter dem
Element angezeigt wird, sofern
Duplikate auftreten.

94

DateChooser
Attribute:

Name Erlaubte Werte Beschreibung

autoHideButton

columns

debug

displayFormat DEPRECATED siehe format

displayProperty DEPRECATED siehe property

editable Boolean: true, false false verhindert das Editieren
des Feldes. Das Feld WIRD
NICHT ausgegraut.

enabled Boolean: true, false

fontSize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

fontStyle String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

format String: LONG_, MEDIUM_, SHORT_,
dd/MM/YYYY

Bestimmt die Formatierung des
angezeigten Datums. Beispiele:
LONG_: 7. September 2016
MEDIUM_: 07.09.2016 SHORT_:
07.09.16

implied Boolean: true, false

maximumSize

maxSize

minimumSize Alias. Siehe minSize

minSize Tupel: (horizontal, vertikal).
Beispiele: minSize="4c, 5c";
minSize="4c,"; minSize=",5c"

Gibt die minimale Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

missingPropertiesPolicy

name String Um das Form-Element
innerhalb des Formulars
referenzieren zu können.

95

Name Erlaubte Werte Beschreibung

popupHeight Integer mit Einheit px, c, em
oder dlu

Die Angabe in Character "c" ist
die zu favorisierende Bestimmt
die Höhe des Fensters, in dem
der Kalender zur
Datumsauswahl angezeigt wird.

popupWidth Integer mit Einheit px, c, em
oder dlu

Die Angabe in Character "c" ist
die zu favorisierende Bestimmt
die Breite des Fensters, in dem
der Kalender zur
Datumsauswahl angezeigt wird.

preferredSize Alias. Siehe prefSize

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

selectAllWhenFocused Boolean: true, *false* Wenn das Form-Element den
Fokus bekommt wird der
gesamte Inhalt selektiert

96

Editor
Der Editor kann für String-Attribute angezeigt werden. Durch die Angabe des Modus kann die
Darstellungsart beeinflusst werden. Es werden dazu intern JEdit-Klassen benutzt.

Beispiel:

...
<Editor property="Bemerkung" mode="patch"/>
...

Attribute: FIXME

Name Erlaubte Werte Beschreibung

columns int: 60 Gibt an wieviele Spalten
angezeigt werden sollen.

electricScroll int: 3 Wird der Cursor an eine
bestimmte Stelle bewegt, wird
sichergestellt, dass x Zeilen
über & unter der Position
angezeigt werden.

focusable Boolean: true, false Ist focusable false, kann das
Textfeld nicht fokussiert
werden…

fontSize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

maxUndos int: 500 Gibt die Anzahl der
gespeicherten Schritte und
damit der möglichen Undos an

mode String: xml, groovy, log, patch Definiert die Formatierung des
Editor-Fensters.

rows int: 10 Gibt an wieviele Zeilen
angezeigt werden sollen.

text String Füllt das Attribut automatisch
mit dem eingegebenen Text

97

Element
Attribute: FIXME

Name Erlaubte Werte Beschreibung

autoCreate Boolean: true, false

autoHide Boolean: true, false

displayProperty DEPRECATED siehe property

fontSize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

fontStyle String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

hideForNullBO Boolean: true, false Bei true wird das eingebettete
GUI-Element nicht angezeigt,
wenn das BO des angegebenen
Attributs null ist, ansonsten ist
es ausgegraut. Das ist nützlich
im Fall von Attributketten,
z.Bsp. bei
property="Person.Name" wird
über das Flag gesteuert, ob das
Eingabefeld des Namens
angezeigt wird, selbst wenn
Person nicht gesetzt ist.
Das Setzen auf false ist ratsam,
wenn durch das Wegfallen des
Eingabefelds die Anordnung
anderer Elemente ungewollt
beeinflusst wird.

hSpaceDist Double -1 Was soll mit dem restlichen
Platz von rightFill geschehen,
sofern != 0 (default:
FView.defaultCellHAlign);
Beispiel: siehe
ipcon/db/core/Report.nrx
Beschriftung, die vor dem
Inhalt des Element Tags
angezeigt wird.

label String Beschriftung, die vor dem
Inhalt des Element Tags
angezeigt wird.

98

Name Erlaubte Werte Beschreibung

labelBackground Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Bestimmt die Hintergrundfarbe
des Labels.

labelForeground Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Bestimmt die Schriftfarbe des
Labes.

mode String: FREE_FIELD, FREE_LABEL,
LABEL_ON_TOP, DEFAULT

FREE_FIELD: Das im Element
beinhaltete Feld füllt den
gesamten Raum zwischen Ende
des Labels und rechtem Rand
des Elternelements. FREE_LABEL:
Das längste Label innerhalb
innerhalb eines gemeinsamen
Elternelements bestimmt die
Breite der "Labelspalte". Alle
Labels und die beinhalteten
Felder werden am rechten Rand
des längsten Labels
ausgerichtet. LABEL_ON_TOP: Das
Label wird über dem
beinhalteten Feld angezeigt.
DEFAULT: siehe FREE_LABEL.

no-label Boolean: true, false

99

Name Erlaubte Werte Beschreibung

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt. Nähere
Informationen hierzu im GUI-
Kochbuch

rightFill

rows

transactionControl

x

y

100

../howto/GUIKochbuch.ad#_änderung_des_kontexts_innerhalb_von_struktur_elementen
../howto/GUIKochbuch.ad#_änderung_des_kontexts_innerhalb_von_struktur_elementen

Email
Attribute: FIXME

Name Erlaubte Werte Beschreibung

align String: LEFT, CENTER, RIGHT,
LEADING, TRAILING

class

columns

debug

disabled Boolean: true, false false verhindert das Editieren
des Feldes. Das Feld WIRD
ausgegraut.

displayFormat DEPRECATED siehe format

displayProperty DEPRECATED siehe property

editable Boolean: true, false false verhindert das Editieren
des Feldes. Das Feld WIRD
NICHT ausgegraut.

font

fontSize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

fontStyle String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

foreground Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

101

Name Erlaubte Werte Beschreibung

format

implied

lineWrap Boolean: true, false Bricht Text an der rechten
Kante um, statt eine Scrollbar
anzuzeigen.

maxSize

maximumSize

minimumSize Alias. Siehe minSize

minSize Tupel: (horizontal, vertikal).
Beispiele: minSize="4c, 5c";
minSize="4c,"; minSize=",5c"

Gibt die minimale Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

missingPropertiesPolicy

name

password Boolean: true, false Passwortfeld statt normalem
Text.

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

preferredSize Alias. Siehe prefSize

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

roundingFormat

rows int: 4

102

Name Erlaubte Werte Beschreibung

selectAllWhenFocused Boolean: true, *false* Wenn das Form-Element den
Fokus bekommt wird der
gesamte Inhalt selektiert

syncOnWait

syncOnWaitDelay

tabSize int: 4

translationAvailable

wrapStyleWord Boolean: true, false Wenn Text umgebrochen wird,
dann möglichst an Whitespace-
Grenzen.

103

Image
Attribute: FIXME

Name Erlaubte Werte Beschreibung

displayProperty DEPRECATED siehe property

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

scaleToFit Boolean: true, false

104

Label
Name Erlaubte Werte Beschreibung

arc Integer >= 0 Der Wert zwischen 0 - 100
bestimmt den Radius der Ecken.

asyncRefresh Boolean: true, false, null Explizit synchrones oder
asynchrones Verhalten
erzwingen. Synchrones
Verhalten ist hilfreich, falls das
Label variierenden Platzbedarf
hat. (Üblicherweise bei
mehrzeiliger HTML-Ausgabe.)

background Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

class

clickable true, false Wenn true und es ist eine
property gesetzt, die auf ein BO
zeigt, wird dieses BO in einem
Formular geöffnet.

disabledIcon

displayFormat DEPRECATED siehe format

displayProperty DEPRECATED siehe property

font

fontSize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

105

Name Erlaubte Werte Beschreibung

fontStyle String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

foreground Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

format String (CBOFormat). Bsp.:
property="." format="'Auflage:
'Auflage.Nr"

Ermöglicht dynamisches
Erzeugen des Labeltextes durch
CBOFormat. Voraussetzung, um,
wie im Beispiel, auf einen
Attributswert zugreifen zu
können, ist es, dass die Property
gesetzt ist (siehe property).

gradientStartColor Farbangabe. Bsp:
gradientStartColor="160 160
255"

Hinterlegt das Label mit einem
Farbverlauf von links nach
rechts. Kann zusammen mit
gradientStopColor verwendet
werden.

gradientStartPosition String: NORTH, SOUTH, WEST, EAST Verlegt den Anfang des
Farbverlaufs.

gradientStopColor Farbangabe. Bsp:
gradientStopColor="160 160
255"

Hinterlegt das Label mit einem
Farbverlauf von rechts nach
links. Kann zusammen mit
gradientStartColor verwendet
werden.

gradientStopPosition String: NORTH, SOUTH, WEST, EAST Verlegt das Ende des
Farbverlaufs.

106

Name Erlaubte Werte Beschreibung

hAlign String: LEFT, CENTER, RIGHT Horizontale Ausrichtung.

hTextPosition String: LEFT, CENTER, RIGHT,
LEADING, TRAILING

html Boolean: true, false Erlaubt es, im text-Attribut
HTML zu benutzen, ohne auf
spitze Klammern verzichten zu
müssen. Enthält das html eine
URL (<a href=" …), wird das
Label implizit clickable, und
die URL wird bei Klick evaluiert
und geöffnet.

icon String: z.Bsp.
icon="20x20/New.gif",
icon="image/remove_red_eye.sv
g" oder
icon="image/remove_red_eye.sv
g@5085dc" (mit Farbangabe in
hex; nur für SVGs verfügbar)

Pfad zum gewünschten icon.
Das icon erscheint vor dem in
text angegebenen Text.

iconColor Farbangabe, z.Bsp. #ffffff Ermöglicht es, dem Icon explizit
eine Farbe zu geben,
vorausgesetzt es handelt sich
um ein SVG icon.

iconTextGap Bsp: iconTextGap="10" Angabe des Abstandes zwischen
dem Icon und Text (als
Ganzzahl)

openProperty Ermöglicht es, eine andere
Property des angezeigten BOs
zu öffnen als angezeigt bzw.
formattiert wird. Bei Benutzung
dieses Attributs wird clickable
automatisch auf true gesetzt.

padding Vier positive ganze Zahlen,
getrennt durch Komma oder
Leerzeichen, die den jeweiligen
Abstand in Pixeln zum oberen,
linken, unteren und rechten
Rand spezifizieren:
padding="20,30,20,30"

Außenabstand in Pixeln.

107

Name Erlaubte Werte Beschreibung

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

text String Text des Labels. Kann HTML
beinhalten, wenn html Attribut
true ist.

textWhileLoading

toolTipText String. Text, der angezeigt wird, wenn
man den Mauszeiger über das
Element hält.

vAlign String: TOP, CENTER, BOTTOM,
z. B. vAlign="TOP"

Bestimmt die vertikale
Ausrichtung des Textes
innerhalb des Elements. Die
Höhe des Elements muss größer
sein als eine normale
Zeilenhöhe, was z. B. durch
Setzen des Attributs prefSize
erreicht werden kann.

vTextPosition String: TOP, CENTER, BOTTOM

Subelemente

Format
Ermöglicht es, das CBOFormat für die anzuzeigende Property statt in einem XML-Attribut (siehe
Tabelle) in einem XML-Element zu definieren.

Siehe dazu auch Subelement "Text".

Text
Ermöglicht es, den anzuzeigenden Text, statt in einem XML-Attribut (siehe oben) in einem XML-
Element zu definieren. Das macht es einfacher, längere Texte anzuzeigen, insb. falls diese mehrere
Zeilen umfassen.


Damit, falls HTML-Text angezeigt werden soll, die automatische HTML-Erkennung
funktioniert, muss der beginnende <html>-Tag direkt am Anfang stehen - es dürfen
keine Leerzeichen oder Zeilenumbrüche davor sein.

108

<Label>
 <Text>Dies ist ein nicht wirklich langer Text.</Text>
</Label>

<Label>
 <Text><![CDATA[<html>
 <body>Ein Text als HTML.</br>
 Alle <...>-Tags zwischen "<Text>" und "</Text>" gehören nicht zur XML-Definition
des Labels sondern sind HTML-Tags für den anzuzeigenden Text.

 Damit Zeichen wie "<" oder "&" nicht codiert eingegeben werden müssen, wurde
"CDATA" benutzt.

 </body>
 </html>]]></Text>
</Label>

onClick
Um klickbare Labels zu nutzen, gibt es drei Möglichkeiten:

• XML-Attribut clickable="true" : Falls das Label ein Property BO anzeigt, wird es bei Klick in
einem neuen Formular geöffnet. Welche Property geöffnet wird, kann über openProperty
gesteuert werden.

• URL-Link in HTML : Enthält der angezeigte Text des Labels eine URL im Format , wird bei Klick versucht, die URL zu öffnen.

• onClick Subelement : Falls die oben genannten Methoden nicht ausreichen, kann ein onClick
script definiert werden. Dieses erhält als Parameter FormContextI ftx, FLabel fe und MouseEvent
event.

109

FPanel (abstrakt)
Superklasse für viele Elemente. Bringt die unten stehenden Attribute und Sub-Elemente mit.

Skriptvariablen
In den Skripten sind diese Bindings verfügbar:

Variablenname Klasse/Interface Definition Beschreibung

ctx ClientContextI ftx.getCtx() Client-weiter Kontext,
wird z.Bsp. zum Öffnen
von Dialogen oder
Formularen benutzt

user Benutzer ftx.getCtx().getSession().
getUser()

der im Client
angemeldete Benutzer

ftx FormContextI ftx Kontext des Formulars,
in dem das FPanel
eingesetzt ist. Wird
gebraucht, um andere
Formularelemente
anzusprechen.

bo BO ftx.getBO() Das zugrundeliegende
BO des FPanels. (Kann
vom rootBO
abweichen)

tx Transaction ftx.getRoot().getTransac
tion()

Die Transaction, mit
der das rootBO geladen
wurde, wenn bol
instanceof Transaction

fe FormElementI fe Das FPanel (als
FormElementI)

bol BOLoaderI ftx.getRoot().getBOLoad
er()

Der Loader, mit dem
die Daten des
Strukturelements
geladen wurde.
Im Fall von Formularen
gilt: bol instanceof
Transaction

rootBO BO ftx.getRoot().getBO() Das zugrundeliegende
BO des Formulars.

Subelemente

110

onAfterSelectValue
Ermöglicht es, ein Skript zu definieren, das nach dem Setzen eines Werts ausgeführt wird.

<Text property="Beschreibung">
 <onAfterSelectValue
language="groovy">ftx['v_lbl_beschreibung_fehlt'].ftx.refreshForms()</onAfterSelectVal
ue>
</Text>

Attribute

Name Erlaubte Werte Beschreibung

language String: groovy, beanshell Die zu verwendende
Skriptsprache.

editableIf
Ergebnis des Ausdrucks (hier bo.kannEditiertWerden) bestimmt, ob das Elternelement editiert
werden kann.

<Text property="Beschreibung">
 <editableIf language="groovy">bo.kannEditiertWerden</editableIf>
</Text>

Attribute

Name Erlaubte Werte Beschreibung

language String: groovy, beanshell Die zu verwendende
Skriptsprache.

visibleIf
Ergebnis des Ausdrucks (hier bo.istSichtbar) bestimmt, ob das Elternelement angezeigt wird.

<Text property="Beschreibung">
 <visibleIf language="groovy">bo.istSichtbar</visibleIf>
</Text>

Attribute

111

Name Erlaubte Werte Beschreibung

leftEntity String: Entitätsname Die Entität, an der das property
des Elternelements hängt, muss
eine Subklasse der hiermit
angegebenen Entität sein. Kann
Skript-Inhalt dieses Tags
ersetzen oder ihn als
Konjunktion ergänzen.

language String: groovy, beanshell Die zu verwendende
Skriptsprache.

leftClass DEPRECATED siehe leftEntity

never Boolean: true, false Wenn true, wird das
Elternelement niemals
angezeigt.

notForLeftEntity

notForRightEntity

property

rightEntity

OnDrop
OnDrop ist ein Tag, dass benutzt werden kann um Dateien zu behandeln die auf das Element
gedropt wurden:

Beispiel:

<onDrop language="groovy">
 def result = Datei.importFileFromDnD(ftx, tx, files, rootBO)
 ftx.toast("${result.size()} Dateien importiert.")
 ftx.getRoot().refreshForms()
</onDrop>

Attribute: FIXME

onFocusGained
Eventhandler. Wird beim Setzen des Eingabe-Focus auf das Elternelement ausgeführt.

<Text property="Beschreibung">
 <onFocusGained language="groovy">ftx.toast('Das Textfeld "Beschreibung" hat jetzt
den Fokus.')</onFocusGained>
</Text>

112

onFocusLost
Eventhandler. Wird ausgeführt, wenn das Elternelement den Fokus verliert.

<Text property="Beschreibung">
 <onFocusLost language="groovy">ftx.toast('Tschüss!')</onFocusLost>
</Text>

onRefresh
Eventhandler. Wird beim Übertragen von Model-Daten in die View aufgerufen.

<Text property="Beschreibung">
 <onRefresh language="groovy">ftx.toast('Lade Beschreibung.')</onRefresh>
</Text>

onSync
Eventhandler. Wird beim Übertragen von View-Daten ins Model aufgerufen.

<Text property="Beschreibung">
 <onSync language="groovy">ftx.toast('Speichere Beschreibung.')</onSync>
</Text>

113

FInputPanel (abstrakt)
Leitet sich von FPanel ab.
Alle Komponenten, die einen Input erwarten leiten sich daraufhin von FInputPanel ab.

Zentralisiert die Mandatory-Berechnung, sodass alle Subklassen ein gleiches Verhalten besitzen.
Außerdem wird noch ein neues Skript-Tag - alsoMandatoryIf - hinzugefügt.

alsoMandatoryIf
Kann benutzt werden um ein Eingabeelement zum Pflichtfeld zu machen.

<alsoMandatoryIf language="groovy">
 ctx.currentUser.istMitgliedVon("Pflichtgruppe")
</alsoMandatoryIf>

Per default ist das angegebene Skript gecached (wird also nur beim Öffnen des Formulars
ausgewertet), da man von komplexerem Code ausgegangen ist.

Möchte man aber, dass bei einem Refresh das Skript erneut evaluiert wird, kann man das Caching
mittels cached="false" deaktivieren.

<alsoMandatoryIf cached="false" language="groovy">
 !rootBO.KundeWillDatenNichtNennen
</alsoMandatoryIf>


Falls das Schema vorgibt, dass ein Element mandatory ist, kann dies NICHT über
alsoMandatoryIf ausgehebelt werden.

114

PDFViewer
Attribute: FIXME

Name Erlaubte Werte Beschreibung

annotationColorEdit Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH Standard: #000000

annotationColorSaved Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH Standard: FF0000

annotationFont String: Helvetica-18

bufferedImage Boolean: true, false false = ein volatiles Bild wird
direkt in den Grafik(karten)-
Speicher geladen, was je nach
Treiber(/Karte/System) länger
dauern kann.

true = ein gepuffertes (aber
speicher-intensiveres) Bild wird
in den Grafik(karten)-Speicher
geladen. Diese Vorgehensweise
ist mitunter unter Windows
etwas schneller

e-no-label Boolean: true, false Unterdrückt die Anzeige des
zugehörigen Labels

enableAnnotations Boolean: true, false

fitOnPage Boolean: true, false

fitWidth Boolean: true, false

forceAntialiasing Boolean: true, false

lowQuality Boolean: true, false

onAnnotationAdded

onAnnotationChanged

onAnnotationRemoved

onAnnotationSelected

115

Name Erlaubte Werte Beschreibung

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

scaleBicubic Boolean: true, false

scaleToFit Boolean: true, false Alias für fitOnPage.

zoomValue Double: 0.05

116

Popup
Ein Popup-Element mit einem Eingabefeld und einem weißen Blatt-Icon auf der rechten Seite zeigt
an, dass Sie hier ein bereits vorhandenes Objekt auswählen und verknüpfen können. Wenn
daneben ein gelber Stift erscheint, können Sie an dieser Stelle direkt ein neues Objekt erstellen. Das
Doppelblatt-Icon kopiert den aktuellen Inhalt in ein neues Objekt und verknüpft dieses. Diese
Funktion ist hilfreich, wenn das ursprüngliche verknüpfte Objekt unverändert bleiben soll, Sie
jedoch an dieser Stelle eine angepasste Version benötigen.

Attribute:

Name Erlaubte Werte Beschreibung

align String: LEFT, CENTER, RIGHT,
LEADING, TRAILING

117

Name Erlaubte Werte Beschreibung

autoEdit Boolean: true, false Attribute in der Detailview
eines Popup Elements sind
normalerweise
schreibgeschützt, d.h. Wert
'false'. Grund ist, dass ein Popup
mit Detailview oft allgemeinere
Informationen im Formular
anzeigt, das BO des Popups
jedoch nicht nur von dem
aktuellen RootBO abhängt. Eine
Änderung eines Attributs im
Kontext dieses RootBOs könnte
demnach nicht allgemein genug
sein um überall zu passen. Dies
hindert den Benutzer daran,
ausversehen einen solchen
Wert zu ändern. Es gibt jedoch
Fälle, in denen es im Formular
explizit gewünscht ist, die
Attribute ändern zu dürfen.
Zum Beispiel wenn das BO
'dependent' vom RootBO ist. In
diesem Fall kann dem Benutzer
das Editieren per Definition von
autoEdit="true" erlaubt
werden.

Soll der Benutzer die Attribute
des BOs ändern dürfen, jedoch
das eigentliche BO nicht sehen
können, dann ist eine
Umsetzung über eine
Attributkette in der property-
Definition bzw. ein Wrapper-
<Element..></Element> vielleicht
sinnvoller.

columns

debug

displayFormat DEPRECATED siehe format

displayFormatDivider

displayFormatPostfix

displayFormatPrefix

displayProperty DEPRECATED siehe property

displaySort

118

Name Erlaubte Werte Beschreibung

editable Boolean: true, false false verhindert Editieren des
Feldes. Das Feld wird
ausgegraut.

fallBackProperty

font

fontsize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

fontStyle String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

foreground Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

format String (CBOFormat). Legt fest, wie das BO für die
Anzeige im Feld formatiert ist.
Bsp: "Id': 'Name"

implied

lazy

lookupCaseSensitive Boolean: true, false Definiert ob die Eingabe mit
oder ohne Berücksichtigung der
Gross-/Kleinschreibung gesucht
werden soll

119

Name Erlaubte Werte Beschreibung

lookupProperty String Komma-separierte Liste von
Attributen/Attribut-Ketten, die
bei der "Schnelleingabe"
durchsucht werden sollen; bei
einem eindeutigen Ergebnis
wird automatisch selektiert

lookupStartingWith

lookupSubstring Boolean: true, false

maximumSize

maxSize

minimumSize Alias. Siehe minSize

minSize Tupel: (horizontal, vertikal).
Beispiele: minSize="4c, 5c";
minSize="4c,"; minSize=",5c"

Gibt die minimale Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

missingPropertiesPolicy

name String Um das Form-Element
innerhalb des Formulars
referenzieren zu können

nullChoiceTitle

offerCopyBeforeEdit

openFormTid String Tid des Formulars, das benutzt
werden soll, um Objekte aus
diesem Popup zu öffnen.

openProperty

popupAlign

popupHeight Integer mit Einheit px, c, em
oder dlu. Bsp.:
popupHeight="40c"

Die Höhe des resultierenden
Popups. Wird keine Einheit
angegeben, wird von einem px-
Wert ausgegangen.

120

Name Erlaubte Werte Beschreibung

popupSize Komma-separierte Integer mit
Einheit px, c, em oder dlu. Bsp.:
popupSize="960, 20c"

Kurzform für popupWidth und
popupHeight. Der erste Wert
bestimmt die Breite, der zweite
Wert die Höhe. Einheiten
können gemischt angegeben
werden. Wird keine Einheit
angegeben, wird von einem px-
Wert ausgegangen.

popupWidth Integer mit Einheit px, c, em
oder dlu. Bsp.:
popupWidth="40c"

Die Breite des resultierenden
Popups. Wird keine Einheit
angegeben, wird von einem px-
Wert ausgegangen.

preferredSize Alias. Siehe prefSize

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

showEntityName Boolean: true, false

showNewAction Boolean: true, false. Bsp.:
showNewAction="true"

Bestimmt, ob im Feld ein Icon
(Blatt mit Stern) angezeigt wird,
das beim Anklicken ein neues
Fenster zum Erstellen eines
neuen Objektes für die jeweilige
Relation öffnet.

showSelectAction Boolean: true, false. Bsp.:
showSelectAction="false"

Bestimmt, ob im Feld ein Icon
(Blatt Papier) angezeigt wird,
das beim Anklicken eine Tabelle
bereits existierender Objekte
öffnet, die für die Relation
ausgewählt werden können.

subentitiesToExclude

121

Name Erlaubte Werte Beschreibung

templateSource

usePolymorphySelectionTree

122

Scheduler
Der Scheduler ist eine spezielle Komponente, die es ermöglicht, Objekte, die eine Zeitspanne
darstellen und zu einer Resource zugeordnet werden, zu planen und zu verwalten.

Denkbare Einsatzgebiete wären: Dienst- und Schichtplanung, Produktionsplanung, allgemeine
Terminplanung

Die minimale Konfiguration des Schedulers benötigt die Attribute property, itemClass und ein
dataMapper script (siehe weiter unten).

Border / Toolbar

Sofern sich der Scheduler nicht bereits in einer Border befindet, wird implizit eine Border um die
Komponente erzeugt, damit gewisse Standardaktionen immer verfügbar sind. XML-Attribute
können vom Scheduler über den Prefix b- an die implizite Border übergeben werden.

DetailView

Wie die Table kann auch der Scheduler eine DetailView haben, welche das jeweils selektierte Item
anzeigt. Es ist jedoch nicht möglich, neue Items über die DetailView zu erzeugen.

Terminologie und Rollen

Diese Komponente verwendet bis zu drei verschiedene Arten von Objekten in unterschiedlichen
Rollen:

Begriff Beispiele Verwendung

Item ZeiterfassungsEintrag,
Produktion, Termin

Dies sind die entlang einer
Zeitachse anzuordnenden
Objekte.

Contact Mitarbeiter, AbstraktePerson,
Benutzer, Maschine

Items werden nach Contacts
gruppiert. Um den Scheduler
benutzen zu können, muss in
der Many-Relation, die als
property gesetzt wird, eine
Instanz vorhanden sein.

Group Abteilung, Niederlassung,
Mandant, Halle

Groups ermöglichen es,
Contacts visuell zu gruppieren.

Attribute:

Name Erlaubte Werte Beschreibung

autoRefresh true, false aktiviert den automatischen
sync von Änderungen aus
anderen Clients.

123

Name Erlaubte Werte Beschreibung

b-* siehe Border Prefix zum Durchleiten von
XML-Attributen an die Border,
welche den Scheduler implizit
umgibt, sofern keine explizite
Border vorhanden ist.

allowOverlaps true, false Erlaubt oder verhindert das
Editieren von Items auf eine
solche Weise, dass es zur
zeitlichen Überlappung von
Items für den gleichen Contact
kommt.

background Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Optional. Farbe, die im
Scheduler auf die oberen
beiden "Zeit-"Header (Jahr und
Monat) angewandt wird, und
das sonstige Farbschema
bestimmt, wenn headerColor
und gridColor nicht gesetzt
sind.

datatipFormat date time duration
date time date time time
duration duration none

Bestimmt, ob und in welchem
Format datatips für Items
angezeigt werden

foreground Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Optional. Zu verwendende
Schriftfarbe im Scheduler.

gridColor Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Optional. Wenn nicht
angegeben, wird eine
aufgehellte headerColor
verwendet.

groupClass Name einer Entität oder Klasse
(z.Bsp. String, Integer)

Optional. Name des Objekttyps,
der die Rolle der "Groups"
einnimmt.

headerColor Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Optional. Wenn nicht
angegeben, wird ein
aufgehellter background
verwendet.

124

Name Erlaubte Werte Beschreibung

itemClass Name einer Entität bzw. deren
Klasse (z.Bsp.
ZeiteintragMitMitarbeiter)

Name der Entität, die die Rolle
der "Items" einnimmt. Neu
erstellte Items sind per Default
von diesem Typ.

noNavigation true, false Bewirkt, dass keine Buttons o.ä.
Elemente auftauchen, mit
denen man durch den Kalendar
navigieren kann. Nützlich,
wenn es im Kontext nur einen
festen Zeitraum gibt.

property Attributname einer Many-
Relation

Many-Relation, welche die
"Contacts" ausgibt. Damit der
Scheduler effektiv bedienbar
ist, muss in der Relation
mindestens ein Objekt
enthalten sein.

range Week, Month Steuert, welchen Zeitraum die
Zeitachse darstellt, und in
welchen Zeiteinheiten die
Zeitachse vor und zurück
geschaltet werden kann, bzw.
Daten nachlädt.

snapUnit Day, Hour, Minute Steuert die Mindestgröße neu
angelegter Items und um
welche minimale Zeiteinheit ein
Item bewegt / verändert
werden darf. (Default: 1 Day)

type Resources, Timetable,
SingleMonth

Steuert den Kalendartyp bzw.
-ansicht.
Timetable: Eine Spalte pro Tag
und Contact, eine Reihe pro 30
Minuten.
Resources: Eine Spalte pro Tag
oder Stunde, eine Reihe pro
Contact.
SingleMonth: Zeigt alle Tage
eines Monats auf einmal, von
Items aber nur den Titel.
(experimentell)

125

Name Erlaubte Werte Beschreibung

viewOnly true, false Steuert, ob Items in der Ansicht
angelegt und verändert werden
dürfen. Da eine editierbare
Ansicht eine etwas
ausführlichere Konfiguration
benötigt, ist der Default true.

workHours 6-22, [0-23]-[0-23] Nur zur Verwendung mit
type="Timetable". Die
Arbeitszeiten werden farbig
hervorgehoben und beim
Öffnen des Schedulers wird
automatisch zur Beginn der
Arbeitszeit gescrollt.

Subelemente:

dataMapper

Das dataMapper Skript beschreibt, welche BOs geladen werden, welche Daten angezeigt, und wie sie
verknüpft werden. Darüber hinaus können auch Verhalten und Darstellung beeinflusst werden.

Als Parameter wird ein mapper vom Typ FSchedulerBOMapper<ItemClass, ContactClass, GroupClass
übergeben, wobei die "GroupClass" optional ist und Void sein kann, wenn keine Gruppen genutzt
werden. "ContactClass" entspricht hierbei dem Typ der Relation, die im XML-Attribut "property"
gesetzt wurde. "ItemClass" muss explizit via XML-Attribut "itemClass" angegeben worden sein
angegeben werden.

Zusätzlich verfügbare Parameter sind: Transaction tx, ClientContextI ctx, FormContextI ftx und
FScheduler fe.

Am mapper existieren die Methoden itemMapper, contactMapper und groupMapper, um die
entsprechenden Rollen zu konfigurieren.
An diesen "Sub-Mappern" wiederum können wahlweise Attribute oder Funktionen hinterlegt
werden.

Beispiel:

126

<dataMapper><![CDATA[
 mapper.itemMapper()
 .displayText('Lohnart.L10nName')
 .start('KommtGueltig') // !Mandatory! ①
 .end('GehtGueltig') // !Mandatory! ②
 .contacts('Mitarbeiter') // !Mandatory!
 .groups('Mitarbeiter.Abteilung')
 .lockedIf { it.getLohnart()?.istNormal() } ③
 .resizingAllowedIf { false } ④
 .background { Color.decode('#f2e3a6') } ⑤

 mapper.contactMapper()
 .format("(AbstraktePerson.Name2|left(1))(AbstraktePerson.Name1|left(1))") ⑥
 .groups('Abteilung') ⑦

 mapper.groupMapper()
 .name('L10nName')
]]></dataMapper>

① itemMapper: Damit Items bei Bedarf aus der Datenbank nachgeladen werden können, müssen
start und end auf persistente Attribute verweisen.

② itemMapper: Um neue Items zu erzeugen und bestehende zu editieren, müssen die Attribute
oder Relationen von start, end und contacts beschreibbar sein.

③ itemMapper: Über lockedIf kann das editieren einzelner Items blockiert werden. Es ist auch
möglich, ein Boolean-Attribut zu übergeben.

④ itemMapper: Über resizingAllowedIf kann gesteuert werden, ob es möglich ist, die Dauer von
Items zu bearbeiten oder ob die Dauer nach der Neuanlage fix bleibt. Per default ist resizing
möglich.

⑤ itemMapper: Die Methoden background und foreground steuern die Farbgebung von Text und
Hintergrund einzelner Items

⑥ contactMapper: Um zu bestimmen, wie ein Contact angezeigt werden soll, kann entweder über
format ein CBOFormat oder über name ein Attribut oder eine Funktion angegeben werden.

⑦ contactMapper: Werden "Groups" verwendet, bestimmt groups welche Gruppen geladen
werden. Neue Items müssen ihrem "Contact" und ggfs. dessen "Group" korrekt zugeordnet sein,
oder sie sind nicht sichtbar.



Es ist möglich, an dem Mapper über itemMapper().query() eine Funktion zu
hinterlegen, die alle "Items" im Zeitraum der Parameter LocalDateTime start und
LocalDateTime end für die "Contacts" mit Set<Long> contactID lädt. Dies kann
sinnvoll oder sogar notwendig sein, wenn mit nicht-persistenten Objekten
gearbeitet wird, um trotzdem effizient Daten zu laden. Wird ein expliziter Query
implementiert, und die Ansicht ist editierbar, so ist es notwendig, neu erzeugte
und ungespeicherte BOs im Rahmen des Query-Scripts mit dem Query-Resultat
zusammen zurückzugeben, damit diese beim "Umblättern" nicht verloren gehen.

Alle weiteren hier aufgelisteten Subelemente enthalten Groovy-Scripte und sind mit Ausnahme des

127

dataMapper-Skripts optional.

Name Variablen /
Rückgabetyp

Beschreibung Default

validIf Transaction tx
FormContextI ftx
ItemClass item
ContactClass contact
LocalDateTime start
LocalDateTime end
Rückgabetyp : boolean

Wird aufgerufen,
unmittelbar nachdem
der Benutzer versucht
hat, ein neues Item
anzulegen oder ein
Item zu modifizieren,
aber bevor diese
Neuanlage oder
Modifikationen in einer
Transaktion
aufgezeichnet bzw. auf
ein BO angewandt
werden.
Im Falle einer
Neuanlage ist item =
null.
Gibt das Skript false
zurück, wird die
Modifikation
abgebrochen, ohne
einen Fehler zu werfen.

Per Default
unimplementiert. Es
wird angenommen,
dass jede Modifikation /
Neuanlage zulässig ist.

128

Name Variablen /
Rückgabetyp

Beschreibung Default

newItem FormContextI ftx
Transaction tx
ContactClass contact
LocalDateTime start
LocalDateTime end
Rückgabetyp :
ItemClass

Wird aufgerufen, wenn
der Benutzer die
Neuanlage eines Items
in der Ansicht via
Mouse Drag
abgeschlossen hat und
validIf true war oder
übersprungen wurde.
Die Werte des von
newItem erzeugten
Objekts werden zurück
in die Ansicht gesynct,
d.h. die übergebenen
Zeiten müssen nicht
zwangsweise die
finalen Zeiten sein.
CAUTION: Es ist
wichtig, dass das
erzeugte Item mit dem
übergebenen Contact
(und dessen Group,
wenn verwendet)
verknüpft wird, da
andernfalls das Item
aus der Ansicht
verschwindet.

Per Default wird
versucht, ein neues
Objekt von dem Typ,
der in itemClass
angegeben wurde, zu
erzeugen. Start, Ende
und Contact werden
über die im Mapper
definierten Attribute
oder Setter-Funktionen
gesetzt und müssen
daher beschreibbar
sein.

onItemClick ItemClass item Das Script wird bei
Doppelklick auf ein
Item ausgeführt.

Per Default öffnet sich
das angeklickte Item in
einem für den Benutzer
verfügbaren und
präferierten Formular.

onContactClick ContactClass contact Das Script wird bei
Doppelklick auf einen
Contact ausgeführt.

Per Default öffnet sich
der angeklickte Contact
in einem für den
Benutzer verfügbaren
und präferierten
Formular.

Ausführliches Beispiel:

Das nachfolgende Beispiel zeigt eine Verwendung des Schedulers mit der nicht-persistenten Entität
ZEKumuliertFuerTag. Da nicht-persistente Entitäten nicht in eine Transaction included und nicht
neugeladen werden können, ist es notwendig, Skripte für newItem und onItemClick zu verwenden.

Das validIf Skript verhindert, dass Zeiteinträge an Feiertagen und Wochenende angelegt oder

129

dorthin bewegt werden.

<Scheduler property="Mitarbeiter" range="Week" viewOnly="false"
itemClass="ZEKumuliertFuerTag" groupClass="Abteilung" background="#587ac2"
foreground="#ffffff">
 <dataMapper><![CDATA[
 import java.awt.Color

 mapper.itemMapper()
 .displayText { i -> i.getBasierendAufZEs().values().findAll { !it.isDeleted()
}.collect { it.lohnart?.l10nName?:'Public Holiday' }.unique().join(', ') }
 .start('Start') // writeable vattr on ZEKumuliertFuerTag
 .end('Ende') // writeable vattr on ZEKumuliertFuerTag
 .contacts('Mitarbeiter')
 .groups('Mitarbeiter.Abteilung')
 .lockedIf { i -> i.getBasierendAufZEs().values().any {
it.istExplizitGestempelt() || it.lohnart?.istNormal() } }
 .resizingAllowedIf { false }
 .background { ZEKumuliertFuerTag ze ->
 def salaryType = ze.getLohnart()
 if (salaryType == null) {
 return null
 } else if (ze.getBasierendAufZEs().values().any { it.istExplizitGestempelt()
|| it.lohnart?.istNormal() }) {
 return Color.decode('#eeeeee') // grey
 } else if (salaryType.istUrlaub()) {
 return Color.decode('#f2e3a6') // yellow
 } else if (salaryType.istKrank()) {
 return Color.decode('#f2b9a6') // red
 } else if (salaryType.istHomeOffice()) {
 return Color.decode('#b7c1e1') // blue
 }
 return null
 }
 .query({ start, end, contactIDs ->
 // use the query option here, since we can't load non-persistent objects
from database, but we can load the persistent objects they are based on
 // thus, the most efficient solution is to load the underlying objects from
database and transform them
 def startDate = DateTimeToolsNG.toDateOfSystem(start)
 def endDate = DateTimeToolsNG.toDateOfSystem(end)
 final def query = 'ONLY ZeiterfassungsEintrag ze WHERE ze.Mitarbeiter.Id IN
LIST($1) AND ErsterZEFuerTag = NULL' +
 ' AND COALESCE(ze.Kommt, ze.KommtKorrigiert) <= $3 AND' +
 ' (COALESCE(ze.Geht, ze.GehtKorrigiert) >= $2 OR COALESCE(ze.Geht,
ze.GehtKorrigiert) = NULL)'

 def zes = tx.queryBO(query, [contactIDs, startDate, endDate] as Object[])
as Collection<ZeiterfassungsEintrag>
 def kumul = zes.collect { it.getZEKumuliertFuerTag() }

130

 // we need to re-add the new entries that were previously created in the tx
(if any)
 for (BO newBO : tx.getNewBOs()) {
 if (newBO instanceof ZeiterfassungsEintrag && !(newBO instanceof
MultiZeiterfassungsEintrag)) {
 if (((ZeiterfassungsEintrag) newBO).ersterZEFuerTag == null) {
 kumul.add(newBO.getZEKumuliertFuerTag())
 }
 }
 }
 return kumul
 })

 mapper.contactMapper()
 .format("(AbstraktePerson.Name1', ')(AbstraktePerson.Name2)")
 .groups('Abteilung')

 mapper.groupMapper()
 .name('L10nName')
]]></dataMapper>
 <newItem><![CDATA[
 import de.ipcon.db.core.BO
 import de.ipcon.tools.date.DateTimeTools
 import java.time.ZoneId
 import java.util.concurrent.TimeUnit

 def e = (Mitarbeiter) contact
 def d = Date.from(start.atZone(ZoneId.systemDefault()).toInstant())
 def salaryType = Lohnart.forHomeOffice(tx)

 createNewZEsForDay = { Mitarbeiter employee, Date day, Lohnart lohnart ->
 // [imagine some code creating persistent time entries for the given day]
 }

 def newItem = createNewZEsForDay(e, d, salaryType)
 return newItem.getZEKumuliertFuerTag()
]]></newItem>
 <onItemClick><![CDATA[
 import de.ipcon.form.MDIManagerI

 def ntx = ctx.getNewFormTransaction()
 // load the persistent entity which builds the np-entity so we have something to
frap
 def frappedEntry = ntx.getBO(item.getBasierendAufZEs().values().find().getId())
 // open the np-object now that it's been built with the right tx
 def cumul = frappedEntry.getZEKumuliertFuerTag()
 def form = ctx.getFormByTid('MCS_ZEITERFASSUNGSEINTRAG_S_TAG',
cumul.getClass().simpleName)
 // and finally open the form
 ctx.openForm(form, ntx, cumul, null, null, null, false,

131

MDIManagerI.VIEWTYPE_WIZARD, null, false, false, false, /*
doNotIncludeNotIncludedNewBOsWithTxAsLoader = */ true)
]]></onItemClick>
 <validIf><![CDATA[
 import java.time.DayOfWeek
 import java.time.ZoneId

 // This isValid check checks if the employee is allowed to work on the day we
try to set
 def employee = (Mitarbeiter) contact
 def d = Date.from(start.atZone(ZoneId.systemDefault()).toInstant())
 def contract = employee.getGueltigerArbeitsvertrag(d)

 def weekDay = start.getDayOfWeek()
 if (weekDay == DayOfWeek.SATURDAY) {
 return contract == null || contract.istSamstag()
 } else if (weekDay == DayOfWeek.SUNDAY) {
 return contract == null || contract.istSonntag()
 }

 // holidays
 def handler = contract?.getNiederlassung()?.getBundesland() ?:
contract?.getNiederlassung()?.getLand()
 if (handler != null && contract != null && !contract.istFeiertag()) {
 return !handler.isFeiertag(d)
 }

 return true
]]></validIf>
</Scheduler>

132

SimpleTimespanChooser
Wenig benutzte Komponente für Attribute vom Typ Timespan (= Dauer, z.Bsp. 1h 30m 42s).
Kombiniert ein Eingabefeld für eine Zahl mit einer Combobox für die Zeiteinheit (Minute, Stunde,
Tag, etc.).

Leitet sich ab von TextInputComponent und erbt daher auch einen Teil der XML-Attribute.

Attribute:

Name Erlaubte Werte Beschreibung

align String: LEFT, CENTER, RIGHT,
LEADING, TRAILING

defaultUnit Erlaubte Werte: years, months,
weeks, days, hours, minutes,
seconds

Bestimmt die vorausgewählte
Zeiteinheit, falls noch nichts
eingegeben wurde.

enabled true, false Aktuell unbenutzt?

fallBackProperty

fontsize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

fontStyle String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

format ??? Aktuell unbenutzt?

rows int: 4

selectAllWhenFocused Boolean: true, *false* Wenn das Form-Element den
Fokus bekommt wird der
gesamte Inhalt selektiert

133

Tab
Attribute:

Name Erlaubte Werte Beschreibung

background Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

debug

editable Boolean: true, false Bei false kann innerhalb dieses
Elements kein Feld mehr
editiert werden.

foreground Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

134

Name Erlaubte Werte Beschreibung

grabFocus Boolean: true, false

implied

lazy Boolean: true, false Daten dieses Tabs erst beim
Öffnen des Tabs laden, nicht
schon beim Öffnen des
Formulars.

maximumSize

maxSize

minimumSize Alias. Siehe minSize

minSize Tupel: (horizontal, vertikal).
Beispiele: minSize="4c, 5c";
minSize="4c,"; minSize=",5c"

Gibt die minimale Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

missingPropertiesPolicy

name String Um das Form-Element
innerhalb des Formulars
referenzieren zu können

preferredSize Alias. Siehe prefSize

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

scrollable Boolean: true, false; Oder
Richtungsbeschränkung, z. B.
scrollable="VERTICAL_ONLY"

Scrollbar für dieses Element
ein- oder ausschalten bzw. auf
eine Richtung beschränken.

title String Wird als Titel des Tabs
angezeigt.

toolTipText String. Text, der angezeigt wird, wenn
man den Mauszeiger über das
Element hält.

Subelemente:

135

Name Erlaubte Werte Beschreibung

autoSelectObject

Column

Columns

DetailView

onAfterSelectValue

onShowingTab Wird ausgeführt, sobald der
Tab aktiviert (angezeigt) wird

onHidingTab Wird ausgeführt, sobald der
Tab deaktiviert (versteckt) wird

Query

View

136

TabbedView
Attribute:

Name Erlaubte Werte Beschreibung

antiAlias Boolean: true, false

conflictPolicy String: 'IGNORE', 'ASK' Gibt an, wie Konflikte beim
Speichern durch veraltete BOs
behandelt werden sollen. Nur
in der äussersten TabbedView /
View erlaubt.
IGNORE: Ignoriere Konflikte
und übernehme/merge die
Änderungen,
ASK: Prüfe auf Konflikte und
Frage den Benutzer wie damit
umgegangen werden soll.

debug

editable Boolean: true, false Bei false kann innerhalb dieses
Elements kein Feld mehr
editiert werden.

height Integer mit Einheit px, c, em
oder dlu

Initiale Höhe der View in Pixeln
oder der angegebenen Einheit.

ignoreOtherLocalTransactionSav
es

Boolean: true, false Nur für Formular-Roots.
Änderungen aus lokalen
Speichervorgängen im Client in
diesem Formular nicht
nachziehen

implied

l10nBundle

maximumSize

maxSize Tupel: (horizontal, vertikal).
Beispiele: maxSize="4c, 5c";
maxSize="4c,"; maxSize=",5c"

minimumSize Alias. Siehe minSize

137

Name Erlaubte Werte Beschreibung

minSize Tupel: (horizontal, vertikal).
Beispiele: minSize="4c, 5c";
minSize="4c,"; minSize=",5c"

Gibt die minimale Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

missingPropertiesPolicy

name String Um das Form-Element
innerhalb des Formulars
referenzieren zu können

preferredSize Alias. Siehe prefSize

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

rotateLabels Boolean: true, false Gibt an, ob bei tabPlacement
LEFT oder RIGHT die Beschriftung
der Tabs gedreht werden soll
oder nicht.

tabLayoutPolicy

tabPlacement String: BOTTOM, TOP, LEFT, RIGHT Die Reiter der TabbedView
unten, oben, links oder rechts
anzeigen.

useMaximumHeight Boolean: true, false, z. B.:
useMaximumHeight="true"

useMaximumWidth Boolean: true, false, z. B.:
useMaximumWidth="true"

width Integer mit Einheit px, c, em
oder dlu

Initiale Breite der View in
Pixeln oder der angegebenen
Einheit.

Subelemente:

138

Name Erlaubte Werte Beschreibung

Tab

139

Table
Attribute: FIXME

Name Erlaubte Werte Beschreibung

alternateCellBackground Farbe, z.Bsp. #ffffff oder 255
255 255

Setzt die Default-
Hintergrundfarbe aller geraden
Zeilen

asyncModel Boolean: true, false

autoRefresh Boolean: true, false Änderungen an Objekten des
Typs, welche in der Tabelle
angezeigt werden, führen zu
einer Aktualisierung der
Tabelle

additionalAutoRefreshEntities String komma-separierte Liste von
Entitätsnamen; Änderungen an
Objekten dieser Typen führen
zusätzlich zum in der Tabelle
angezeigten Typ zu einer
Aktualisierung der Tabelle;
funktioniert nur zusammen mit
autoRefresh="true"; Unter-
Entitäten werden automatisch
mitüberwacht

autoSelectFirst Boolean: true, false

autoSelectLast Boolean: true, false

autoSelectNone Boolean: true, false

cellBackground Farbe, z.Bsp. #ffffff oder 255
255 255

Setzt die Default-
Hintergrundfarbe aller
ungeraden Zeilen

140

Name Erlaubte Werte Beschreibung

columns String Definition der Spalten einer
Tabelle im Kurzformat. Bsp.:

columns="Attribut1, 25c, desc3
| Attribut2, desc | Attribut3,
desc2"

Einzelne Spaltendefintionen
werden durch | getrennt.

desc und desc2 bestimmen eine
absteigende Sortierung. Die
Numerierung legt die Priorität
der Spalte beim Sortieren fest,
wobei desc vor desc2
berücksichtigt wird und desc2
vor höheren Ziffern. Durch
Verwendung von asc kann auch
aufsteigend sortiert werden.

Spalten werden ausgeblendet,
indem sie einfach nicht
deklariert werden. Die
Reihenfolge kann geändert
werden.

25c definiert hier eine
Spaltenbreite von 25
Buchstaben. Weitere erlaubte
Einheiten sind px, em und dlu.

Bei polymorphem
Tabelleninhalt kann es hilfreich
sein, den Typ des jeweiligen
Objektes mit Bot.Name
'$R{BOTyp}' anzuzeigen.

columnSelectionAllowed Boolean: true, false False: Bei Mausklick (oder
.selectObject()) wird die
komplette Zeile ausgewählt

createInDetailView Boolean: true, false

dependent Boolean: true, false Die anzuzeigenden Elemente
sind nicht eigenständig und
leben nur in diesem View.

displayClass DEPRECATED

141

Name Erlaubte Werte Beschreibung

displayProperty DEPRECATED siehe property

easyEdit Boolean: true, false Selektion per Doppelklick

editableDetailView Boolean: true, false Bewirkt, dass die DetailView
der Tabelle das Bearbeiten der
dort angezeigten Werte zulässt.
Nützlich, wenn es sich bei
diesen Werten bspw. um
Attribute aus Subrelationen
eines virtuellen Attributs
handelt, die eigentlich gesperrt
wären.

editable Boolean: true, false

entity String: Entitätsname Bestimmt die Entität, deren
Objekte diese Tabelle darstellen
soll.

explicitStart Boolean: true, false Die Daten im Lesezeichen
werden erst vom Server
geladen, wenn man das explizit
mit F5 oder RETURN
"anfordert". Man kann also
erstmal alle nötigen Filter
setzen und das Lesezeichen
beginnt nicht bereits nach dem
ersten gesetzten Filter mit dem
Laden. Nützlich bei Entitäten
mit sehr vielen Objekten, bei
denen es angeraten ist erst mal
ein bisschen vorzufiltern.

filter String

fontSize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

freeSearch Boolean: true, false Verbirgt das Eingabefeld für die
freie Suche, wenn „false“
angegeben ist, sodass die
Tabelle entweder nur mit
benutzerdefinierten Filtern
oder ganz ohne Filter angezeigt
wird.

height Integer

142

Name Erlaubte Werte Beschreibung

horizontalScrollBarPolicy String: ALWAYS, AS_NEEDED, NEVER ALWAYS: Zeigt eine horizontale
Scrollbar an, sobald ein Objekt
in der Tabelle nicht mehr
vollständig in das aktuelle
Fenster passt.

AS_NEEDED: Zeigt eine
horizontale Scrollbar an, sobald
ein Objekt in der Tabelle nicht
mehr vollständig in das aktuelle
Fenster passt.

NEVER: Es wird niemals eine
Scrollbar angezeigt, auch nicht
dann, wenn nicht alle Objekte
der Tabelle in das aktuelle
Fenster passen.

implied

intercellSpacingX Integer Zusätzlicher freier Raum in
Zellen horizontal.

intercellSpacingY Integer Zusätzlicher freier Raum in
Zellen vertikal.

itemProperty String Zeiger auf die Property, die in
den Elementen die
Postennummer darstellt.
Posten-Modus. Fuehrt dazu,
dass zwei Aktionen, naemlich
Posten-rauf und Posten-runter
gebaut werden, und die ITable
standardmaessig die
Postenspalte aufsteigend
sortiert.

linkOnly Boolean: true, false Es können nur bestehende
Objekte verknüpft werden und
keine neue erstellt

loadImmediate Boolean: true, false Bestimmt, ob die Objekte in der
Tabelle sofort geladen werden
sollen. Wenn true, ist ein
Drücken von Enter im
Suchbalken zur Anzeige der
Inhalte nicht erforderlich.

maxRowHeight Integer

143

Name Erlaubte Werte Beschreibung

maxRows Integer: 100000 Definiert die maximale Anzeige
von Objekten (vergleichbar mit
dem von SQL bekannten "LIMIT
100000")

maximumSize siehe maxSize

maxSize Tupel: (horizontal, vertikal).
Beispiele: maxSize="4c, 5c";
maxSize="4c,"; maxSize=",5c"

minimumSize siehe minSize

minSize Tupel: (horizontal, vertikal).
Beispiele: minSize="4c, 5c";
minSize="4c,"; minSize=",5c"

missingPropertiesPolicy String: error, ignore, log Wie soll mit nicht existierenden
oder falsch geschriebene
Attributen in der
Spaltendefinition umgegangen
werden

name String Um das Form-Element
innerhalb des Formulars
referenzieren zu können

openFormTid String Tid des Formulars, das benutzt
werden soll, um Objekte aus
dieser Tabelle zu öffnen.

openProperty String Name der Property für welche
beim Doppelklick das
Standardformular geöffnet
wird.

parentClass DEPRECATED

parentEntity String

preferredSize Alias. Siehe prefSize

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

preferredVisibleRows Integer: 5 Definiert die bevorzugte Anzahl
angezeigter Zeilen

144

Name Erlaubte Werte Beschreibung

property String

readOnly Boolean: true, false

reloadBOsWhenOpening Boolean: true, false True: Beim Öffnen von BOs
über dieses Lesezeichen
werden die BOs immer neu
vom Server neu geladen, anstatt
die Instanz aus dem
Lesezeichen zu verwenden.

resizeMode String: ALL_COLUMNS, LAST_COLUMN,
NEXT_COLUMN, SUBSEQUENT_COLUMNS,
OFF

Bestimmt das Verhalten der
Spaltenbreite beim
Vergrößern/Verkleinern der
Tabelle.

rowHeight Steuert die Default-Höhe der
Zeilen, z.Bsp 2c

rowSelectionAllowed Boolean: true, false False: Bei Mausklick wird die
komplette Spalte ausgewählt

showEntityName Boolean: true, false

showHorizontalLines Boolean: true, false

showVerticalLines Boolean: true, false

singleClickEdit Boolean: true, false

sortForSelected Boolean: true, false

subentitiesToExclude String: Kommaseparierte Liste
von Entitätsnamen

Subentitäten der in der Tabelle
dargestellten Entität, die nicht
angezeigt werden sollen.

templateSource String

useMaximumHeight Boolean: true, false, z. B.:
useMaximumHeight="true"

useMaximumWidth Boolean: true, false, z. B.:
useMaximumWidth="true"

usePolymorphySelectionTree Boolean: true, false

145

Name Erlaubte Werte Beschreibung

verticalScrollBarPolicy String: ALWAYS, AS_NEEDED, NEVER ALWAYS: Zeigt eine vertikale
Scrollbar an, sobald ein Objekt
in der Tabelle nicht mehr
vollständig in das aktuelle
Fenster passt.

AS_NEEDED: Zeigt eine vertikale
Scrollbar an, sobald ein Objekt
in der Tabelle nicht mehr
vollständig in das aktuelle
Fenster passt.

NEVER: Es wird niemals eine
Scrollbar angezeigt, auch nicht
dann, wenn nicht alle Objekte
der Tabelle in das aktuelle
Fenster passen.

viewOnly Boolean: true, false Es darf nur geschaut werden,
verlinken bestehender Objekte,
etc ist nicht möglich

width Integer

Column
Attribute:

Name Erlaubte Werte Beschreibung

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

displayProperty DEPRECATED siehe property

format String (CBOFormat). Legt fest, wie das BO aus der
property für die Anzeige in der
Zelle formatiert wird. Bsp: "Id':
'Name"; funktioniert nur, wenn
das letzte Attribut in der
property auf eine Relation
verweist

displayFormat DEPRECATED siehe format

146

Name Erlaubte Werte Beschreibung

toolTipFormat String (CBOFormat). Legt fest, wie das BO der
aktuellen Zeile als ToolTip für
diese Spalte formatiert wird.
Bsp: "Id': 'Name"

title String Überschrift für die Spalte.

width Integer mit Einheit px, c, em
oder dlu

Initiale Breite der Spalte in
Pixeln oder der angegebenen
Einheit.

vAlign String: TOP, CENTER, BOTTOM,
z. B. vAlign="TOP"

Bestimmt die vertikale
Ausrichtung des Textes
innerhalb des Elements. Die
Höhe des Elements muss größer
sein als eine normale
Zeilenhöhe, was z. B. durch
Setzen des Attributs prefSize
erreicht werden kann.

cellBackground Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Bestimmt die Hintergrundfarbe
der Spalte für ungerade
Zeilennummern.

147

Name Erlaubte Werte Beschreibung

alternateCellBackground Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Bestimmt die alternative
Hintergrundfarbe der Spalte für
gerade Zeilennummern.

cellForeground Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Bestimmt die Schriftfarbe der
Spalte für ungerade
Zeilennummern.

alternateCellForeground Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Bestimmt die Schriftfarbe der
Spalte für gerade
Zeilennummern.

deferredRendering Boolean: true, false FIXME aktuell ohne Funktion?

debug Boolean: true, false Aktiviert Info-Level Logging
beim Rendern von Zellen.

caching Boolean: true, false Aktiviert oder deaktiviert das
Caching von angezeigten
Werten.

style String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

justification String: LEFT, CENTER, RIGHT

sort ASC, DESC, NONE Gibt an, in welcher Richtung die
Spalte sortiert werden soll.
NONE verbietet das Sortieren.

148

Name Erlaubte Werte Beschreibung

sortLevel int: 0 Gibt die Sortier-Reihenfolge der
Spalten an.

rendererClass String Hier kann der Name einer
TableCellRenderer-Klasse
angegeben werden, die statt des
Default Renderers benutzt
werden soll.

headerRenderer und renderer

Hier können spezielle Renderer konfiguriert werden um z.B. die Farbe abhängig vom Inhalt der
Zelle zu ändern. Sie müssen auf Spaltenebene definiert werden:

<Column property="Enabled">
 <renderer>
 import java.awt.Color
 renderer.setHorizontalAlignment(javax.swing.SwingConstants.CENTER)
 if (!value) { ①
 renderer.setBackground((row&1) == 0 ? new Color(234, 176, 176) : new Color(240, 200, 200)) ②
 renderer.setText('\u2717') ③
 } else {
 renderer.setBackground((row&1) == 0 ? new Color(199, 234, 176) : new Color(207, 226, 186))
 renderer.setText('\u2714')
 }
 </renderer>
</Column>

① value beinhaltet den Wert aus dem Property. In diesem Fall also Enabled als Boolean.

② Falls der Wert von Enabled false/null ist wird der Hintergrund abhängig von der Zeilen-Nummer
in einem unterschiedlichen Rot-Ton eingefärbt.

③ Der Inhalt wird auf das Unicode-Zeichen ✗ gesetzt.


Wenn man am Background rumfuhrwerkt, muss man natürlich auch den
"isSelected"-Status abfragen und den Background selbst entsprechend setzen (z.B.
das gesetzte Rot bei markierten Zellen etwas bläulich einfärben).

DetailView
Die DetailView wird als Subelement der Table verwendet, um Details zum jeweils gerade innerhalb
der Tabelle angeklickten Objekt anzuzeigen bzw. um das Bearbeiten der Attribute des Objekts zu
ermöglichen. Sind von den Änderungen innerhalb der DetailView Inhalte der Tabelle betroffen,
werden diese automatisch aktualisiert.

Achtung: Falls die DetailView für eine Tabelle in einem Lesezeichen verwendet wird, muss im
<table> Element das Attribut viewOnly="true" gesetzt sein.

Attribute: FIXME

149

Name Erlaubte Werte Beschreibung

adjustableSplit Boolean: true, false Falls Wert auf true, kann der
Bereich der DetailView mit der
Maus verschoben, sprich
vergrößert/verkleinert werden.

position String: NORTH, SOUTH, WEST, EAST

resizeWeight Float: 0.0

scrollable Boolean: true, false; Oder
Richtungsbeschränkung, z. B.
scrollable="VERTICAL_ONLY"

Scrollbar für dieses Element
ein- oder ausschalten bzw. auf
eine Richtung beschränken.



Sollen Attribute von Objekten aus Relationen des Tabellenobjekts geändert
werden, müssen für diese jedoch onAfterSetValue-Hooks implementiert werden,
der die Version des eigentlichen Objekts anstößt, um ein Aktualisieren der Tabelle
zu erzwingen.

Beispiel mit onAfterSetValue:

<Table property="Buecher" columns="Titel | Erscheinungsjahr | Autor.Familienname">
 <DetailView name="autor">
 <Border etched="true" title="Details zum Autor">
 <View scrollable="true">
 <Element label="Familienname">
 <Text property="Autor.Familienname">
 <onAfterSetValue
language="groovy">ftx['autor'].getBO().bumpVersion()</onAfterSetValue>
 </Text>
 </Element>
 </View>
 </Border>
 </DetailView>
</Table>

150

MultipleChoiceFilterGUI
Hierbei handelt es sich um einen Filter, der via <filter type="multipleChoice"> in eine FTable
(Lesezeichen, Popup) eingebaut werden kann.
Für Hilfe beim Anlegen eines Filters die Solstice User-Dokumentation lesen.

Name Erlaubte Werte Beschreibung

preselectIdx int Gibt an, welcher Index in dem
Dropdown standardmäßig
ausgewählt ist.

sort ASC, DESC, NONE Gibt an, in welcher Reihenfolge
die Queryergebnisse sortiert
werden sollen

151

user-solstice.pdf#solstice_lesezeichen

Text
Attributes:

Name Erlaubte Werte Beschreibung

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

align String: LEFT, CENTER, RIGHT,
LEADING, TRAILING

background Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Setzt die Hintergrundfarbe der
Textbox. Bitte nur mit FlatLaF
verwenden, da NimRod den
Hintergrund für "mandatory"-
Felder auf rot setzt.

class Angabe der Klasse zur
Textdarstellung, z.B. ITextArea

disabled Boolean: true, false Das Feld wird ausgegraut und
kann nicht editiert werden.

disguiseAsLabel Boolean: true, false Ahmt ein Label nach: Das
Textfeld kann nicht editiert
werden, hat das gleiche Styling
wie ein Label und format kann
als CBOFormat der property
oder des BOs verwendet
werden.

displayFormat DEPRECATED siehe format

152

Name Erlaubte Werte Beschreibung

displayProperty DEPRECATED siehe property

font

foreground Farbangabe. Bitte entweder als
"#rrggbbaa" oder "r,g,b,a", "r g b
a" oder eine Farbkonstante der
java.awt.Color, z.B. YELLOW
angeben. Farbnamen mit
Postfix "ISH" werden in
Richtung weiss verschoben
(Mittelwert der einzelnen
Farbwerte und 255). Der
Alphawert ist optional. Die
einzelnen Werte sind bei den
beiden letzteren Varianten
entweder Float-Werte von
0.0..1.0 (bei 1 bitte 1.0 angeben!)
oder Integer-Werte von 0..255.
bitte nur die eine Sorte Werte
verwenden. Oder fuer Random-
Farbe: random.'

Setzt die Textfarbe.

format

lineWrap Boolean: true, false Bricht Text an der rechten
Kante um, statt eine Scrollbar
anzuzeigen.

password Boolean: true, false Passwortfeld statt normalem
Text.

roundingFormat

rows int: 4

selectAllWhenFocused Boolean: true, *false* Wenn das Form-Element den
Fokus bekommt wird der
gesamte Inhalt selektiert

syncOnWait

syncOnWaitDelay

tabSize int: 4

translationAvailable

wrapStyleWord Boolean: true, false Wenn Text umgebrochen wird,
dann möglichst an Whitespace-
Grenzen.

153

StyledText
Wie Text, aber styled, d.h. mit HTML content mit eingeschränkter Auswahl an Elementen und
Toolbar wie in einer einfachen Textverarbeitung für Textformatierung, Alignment und Tabellen.

Attributes:

Name Erlaubte Werte Beschreibung

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

displayProperty DEPRECATED siehe property

onlyTextFormattingActions Boolean: true, false Für StyledText nur die
Textformatierungs-Aktionen
(Fett, Kursiv, Unterstrichen) in
der Toolbar anzeigen.

excludeTableActions Boolean: true, false Für StyledText die Tabellen-
Aktionen (neue Tabelle,
Spalte/Zeile
hinzufügen/entfernen) in der
Toolbar unterdrücken.

columns int: 20 Gibt an wieviele Spalten
angezeigt werden sollen.

rows int: 4 Gibt an wieviele Zeilen
angezeigt werden sollen.

readOnly Boolean: true, false Gibt an, ob das Feld für
Eingaben gesperrt sein soll.

selectAllWhenFocused Boolean: true, *false* Wenn das Form-Element den
Fokus bekommt wird der
gesamte Inhalt selektiert

154

TimeSelector
Eingabe-/Bearbeitungsmöglichkeit für ein oder mehrere Zeitspannen innerhalb eines Zeitraums.

 FIXME TT 2019-05-08: Wird praktisch nie benutzt.

Name Erlaubte Werte Beschreibung

startingHour int: 0-23 Erste mögliche auszuwählende
Stunde des Tages

rangeHours int: 1-n (24) Anzahl der von startingHour
ausgehend anzuzeigenden
Stunden

interval int: 5,10,15,20,30,60 Länge der Intervall-Aufteilung
innerhalb einer Stunde

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

onRelease Element FIXME ??? FIXME ???

155

ToggleButton
Knopf der zwischen zwei Zuständen wechselt; Eingabe-/Bearbeitungsmöglichkeit für Boolean-
Werte.



Damit auch der Text zwischen seinen trueText und falseText Varianten wechselt,
ist es aktuell notwendig, dass:

• An der zugehörigen Action ein XML-Attribut initialState="[true|false]"
gesetzt ist

• Der "Zustand" der Aktion gewechselt wird, indem innerhalb des onAction
Skripts action.setSelectedState(bool) gerufen wird.

Name Erlaubte Werte Beschreibung

action String cmd-Attribut der Action, die bei
Klick auf den Button ausgeführt
werden soll.

displayProperty DEPRECATED siehe property

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

class Angabe eigener Klasse für das
GUI Control Element. Diese
muss vom Typ
javax.swing.JToggleButton sein.

background Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Hintergrundfarbe des Buttons
im "nicht-gedrückten" Zustand.

foreground Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Vordergrundfarbe (d.h.
Schriftfarbe).

156

Name Erlaubte Werte Beschreibung

selectedColor Farbangabe. #rrggbbaa, r,g,b,a,
r g b a. Alpha optional.
Beispiele: #14f900, 255,255,0,0,
0.5 0.4 0.3 0.2, GREEN,
YELLOWISH

Hintergrundfarbe des Buttons
im gedrückten Zustand. Falls
selectedColor nicht angegeben
ist, wird background in einer
anderen Schattierung als
selectedColor verwendet.

fontSize String: +X% Gibt an, um wieviel Prozent die
Schrift vergrößert werden soll.

fontStyle String: z. B. fontStyle="bold",
fontStyle="italics" oder
fontStyle="BOLD",
fontStyle="italics"

hAlign

vAlign String: TOP, CENTER, BOTTOM,
z. B. vAlign="TOP"

Bestimmt die vertikale
Ausrichtung des Textes
innerhalb des Elements. Die
Höhe des Elements muss größer
sein als eine normale
Zeilenhöhe, was z. B. durch
Setzen des Attributs prefSize
erreicht werden kann.

multiClickThreshold Integer (750ms) Spezifiziert innerhalb welches
Zeitraums mehrfaches Klicken
des Buttons als ein einfaches
Klicken interpretiert wird

trueIcon String: z.Bsp.
icon="20x20/New.gif",
icon="image/remove_red_eye.sv
g" oder
icon="image/remove_red_eye.sv
g@5085dc" (mit Farbangabe in
hex; nur für SVGs verfügbar)

Pfad zum gewünschten icon.
Icon für den Toggle-Button im
"gedrückten" Zustand.

falseIcon String: z.Bsp.
icon="20x20/New.gif",
icon="image/remove_red_eye.sv
g" oder
icon="image/remove_red_eye.sv
g@5085dc" (mit Farbangabe in
hex; nur für SVGs verfügbar)

Pfad zum gewünschten icon.
Icon für den Toggle-Button im
"nicht-gedrückten" Zustand.

157

Name Erlaubte Werte Beschreibung

text String Beschriftung des Toggle-
Buttons. Falls falseText
angegeben ist, wird dieser Text
nur im "gedrückten" Zustand
angezeigt.

trueText String Alias für text.

falseText String Text für den Toggle-Button im
"nicht-gedrückten" Zustand.

158

Tree
Auswahl von Einträgen für eine Relation, deren mögliche Einträge hierarchisch in einer
Baumstruktur angeordnet sind.

Attributes:

Name Erlaubte Werte Beschreibung

childrenProperty String. Bsp.:
childrenProperty="Kinder"

Kinder-Attribut. Bei
Subentitäten von Querbaum
einfach "Kinder."

displayClass DEPRECATED

displayProperty DEPRECATED siehe property

entity String: Entitätsname. Bsp.:
entity="Verzeichnis"

Die Entität, deren Instanzen als
Baum dargestellt werden sollen.
Obligatorisch.

filter ACHTUNG: Dieses Attribut wird
im Moment noch nicht vom
Tree unterstützt.

format String: Attributname, z. B.
format="Bezeichnung"

Das Attribut, das die
Beschriftung der Knoten im
Baum stellen soll. Default: ui
description

freeSearch Boolean: true, false Aktuell ohne Funktion, da es
keine Suchmöglichkeit im Baum
gibt.

height Integer. Bsp.: height="3"

parentProperty String. Bsp.:
parentProperty="Elter"

Eltern Attribut. Bei Subentitäten
von Querbaum einfach "Elter."

property String: Property accessor.
Beispiele:
property="Buch.Autor.Alter";
property="."

Das Attribut der aktuell
betrachteten Entität, das im
Kontext dieses Elementes
verwendet werden soll. Im
zweiten Beispiel wird das BO
des aktuellen Formkontexts als
Property gesetzt.

restrictToEntity

usePolymorphySelectionTree Boolean: true, false

width Integer. Bsp.: width="15"

159

Uri
Attributes:

Name Erlaubte Werte Beschreibung

autoaddProtocol Boolean: true, false

160

View
Attributes:

Name Erlaubte Werte Beschreibung

autoHideElements Boolean: true, false

border

columns Integer, z. B.: columns="3" Teilt die Inhalte der View auf
die angegebene Anzahl Spalten
auf.

conflictPolicy String: 'IGNORE', 'ASK' Gibt an, wie Konflikte beim
Speichern durch veraltete BOs
behandelt werden sollen. Nur
in der äussersten TabbedView /
View erlaubt. IGNORE:
Ignoriere Konflikte und
übernehme/merge die
Änderungen,
ASK: Prüfe auf Konflikte und
Frage den Benutzer wie damit
umgegangen werden soll.

debug

defaultRightFill Double: 1. Wert zwischen 0 und
1. defaultRightFill="1":
maximale Breite; 0-1:
Prozentuale Streckung, bevor
die Streckung aufgegeben wird.
Fallback ist 0. Bsp.:
defaultRightFill="0.5"

Verhindert Streckung von
Feldern und benutzt
preferredSize.

delegateToParent Boolean: true, false Die View übernimmt die
Anzeigeeinstellungen (z.B.
Anzahl columns) der
übergeordneten View. Dadurch
kann z.B. einheiltiche Anzeige
der Formularelemente in
verscheidenen Views erreicht
werden.

editable Boolean: true, false Wenn false werden
Kindelemente gesperrt, sodass
diese nicht editiert werden
können.

externalHGap Integer mit Einheit px, c, em
oder dlu. Bsp.:
externalHGap="3c"

Erzeugt links und rechts der
View den angegebenen
Abstand.

161

Name Erlaubte Werte Beschreibung

externalVGap Integer mit Einheit px, c, em
oder dlu. Bsp.:
externalVGap="3c"

Erzeugt über und unter der
View den angegebenen
Abstand.

height

hideElementsForNullBO Boolean: true, false

ignoreOtherLocalTransactionSav
es

Boolean: true, false Nur für Formular-Roots.
Änderungen aus lokalen
Speichervorgängen im Client in
diesem Formular nicht
nachziehen

implied

internalHGap Integer mit Einheit px, c, em
oder dlu. Bsp.:
internalHGap="3c"

Fügt den angegebenen Abstand
zwischen Labels und Feldern
ein.

internalVGap Integer mit Einheit px, c, em
oder dlu. Bsp.:
internalVGap="3c"

Fügt den angegebenen Abstand
zwischen Zeilen ein.

l10nBundle

maximumSize Alias. Siehe maxSize

maxSize Tupel: (horizontal, vertikal).
Beispiele: maxSize="4c, 5c";
maxSize="4c,"; maxSize=",5c"

minimumSize Alias. Siehe minSize

minSize Tupel: (horizontal, vertikal).
Beispiele: minSize="4c, 5c";
minSize="4c,"; minSize=",5c"

Gibt die minimale Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

missingPropertiesPolicy

name String Um das Form-Element
innerhalb des Formulars
referenzieren zu können

preferredSize Alias. Siehe prefSize

162

Name Erlaubte Werte Beschreibung

prefSize Tupel: (horizontal, vertikal).
Beispiele: prefSize="8c, 6c";
prefSize="8c,"; prefSize=",6c"

Gibt die bevorzugte Größe des
Elements mit horizontalem und
vertikalem Wert an und ersetzt
die ansonsten automatische
Größenberechnung. Diese
würde das Element auf das
Minimum an Platz für dessen
Inhalt setzen. Beide Werte sind
jeweils optional.

scrollable Boolean: true, false; Oder
Richtungsbeschränkung, z. B.
scrollable="VERTICAL_ONLY"

Scrollbar für dieses Element
ein- oder ausschalten bzw. auf
eine Richtung beschränken.

tint <Farbwert>[@<Intensität>],
Intensität ist default 0.1;
Beispiele: tint="#ff0000 @ 0.1";
tint="GREENISH"

Färbt den Hintergrund des
Views in der angegebenen
Farbe ein

useMaximumHeight Boolean: true, false, z. B.:
useMaximumHeight="true"

useMaximumWidth Boolean: true, false, z. B.:
useMaximumWidth="true"

width

163

Datenaustausch
MyTISM bietet diverse Möglichkeiten des Imports als auch Export von Daten.

164

Import
FIXME

165

Export

Excel
Für den Datenaustausch nach Excel bzw. kompatiblen Tabellenkalkulationsprogrammen kommt
intern die Apache POI Bibliothek zum Einsatz (https://poi.apache.org).

Etwas schöner benutzen lässt sich das mit dem XlsHandler, der in dem ein oder anderen Projekt
bereits zur Anwendung gekommen ist (einfach über das Repository nach XlsHandler.nrx suchen).
Dort gibt es drei Methoden: . Bauen von Header . Befüllen des Sheets . Den eigentlichen Export
erstellen

Die Features, die man nutzen kann, findet man auf der Seite von Apache POI beschrieben. Grob
gesagt geht "fast" alles:

• mehrere Sheets

• Styles

• Formeln

• Bilder

• …

(Siehe die Tabelle unten hier: https://poi.apache.org/components/spreadsheet/index.html)

Bekannte Einschränkungen sind:

• wenige Charts

• keine Makros

• kein Pivot

• gewisse Größenbeschränkungen der Files

(Siehe auch https://poi.apache.org/components/spreadsheet/limitations.html)

Für das, was normalerweise benötigt wird, sollte es aber hoffentlich ausreichend sein.

Ein Beispiel für den Export findet man im Repository, wenn man nach der Klasse
AngebotsgruppeGas.nrx sucht (Methode "exportSummenlastgaenge").

Natürlich kann man das auch in einem Groovy-Skript direkt im Client / einem Lesezeichen / einem
Formular machen.

Zu überlegen ist, ob bei entsprechend häufiger Verwendung (u.a. auch direkt durch den Kunden),
wir die interne API möglichst benutzerfreundlich gestalten, damit die Skripte nicht zu kompliziert
werden.

166

https://poi.apache.org
https://poi.apache.org/components/spreadsheet/index.html
https://poi.apache.org/components/spreadsheet/limitations.html

Lokale autoritative sowie
synchronisierende Instanzen zum
Entwickeln aufsetzen
Manchmal benötigt man beim Entwickeln bestimmter Features - meist bei Core-Arbeiten - eine
Konstellation von autoritativem Server und synchronisierendem/n Servern.

Hier eine stichwortartige Anleitung wie man solche eine Konstellation auf seinem lokalen
Entwickersystem aufsetzen kann. Ausgegangen wird davon, dass eine Instanz - die autoritative
Instanz - bereits existiert. Außerdem wird davon ausgegangen, dass beide Instanzen immer
denselben Codestand nutzen sollen - falls nicht muss für die synchronisierende Instanz ein eigenes
"deploy"-Verzeichnis angelegt werden, statt das der autoritativen Instanz zu verlinken.

Im folgenden wurde überall der Zusatz "syncnode" für Namen von zur synchronisierende Instanz
gehörigen Dingen gewählt. Dieser ist aber prinzipiell beliebig bzw. das Verzeichnis könnte generell
theoretisch beliebig benannt werden. Der besseren Zuordnung halber sollte man allerdings die hier
beschriebene Variante wählen.

Folgendes ist dann zum Aufsetzen der zugehörigen synchronisierende Instanz zu tun:

• Verzeichnis /.<projektkuerzel>-syncnode anlegen (muss normalerweise als root/via sudo
gemacht werden, um das /-Verzeichnis modifizieren zu dürfen)

• Besitzer korrekt setzen (wie vom Verzeichnis der autoritativen Instanz /.<projektkuerzel>)

• /.<projektkuerzel>/deploy nach /.<projektkuerzel>-syncnode/deploy verlinken

• /.<projektkuerzel>/filesRoot nach /.<projektkuerzel>-syncnode/filesRoot verlinken

• /.<projektkuerzel>/lib/mytism nach /.<projektkuerzel>-syncnode/lib/mytism verlinken

• Dateien /.<projektkuerzel>mytism.ini etc. nach /.<projektkuerzel>-syncnode kopieren

• /.<projektkuerzel>-syncnode/mytism.ini anpassen:

◦ nodeNumber anpassen, falls Id der zugehörigen BN bekannt; oder Zeile komplett löschen,
dann wird automatisch eine neue angelegt

◦ (DB-)url anpassen: <dbname> → <dbname>-syncnode

◦ filesRoot anpassen → /.<projektkuerzel>-syncnode/filesRoot

◦ authoritative=1 → authoritative=0

◦ SyncService*-Einträge aktivieren:

[Sync]
url=socket://localhost:4242?compress=zlib9
user=Admin
pass=

167

Statt "Admin" und leerem Passwort bitte die korrekten Zugangsdaten aus der Datenbank
eintragen.

◦ port und tlsPort anpassen → z.B. statt 4242 und 4243 Ports 14242 und 14243 nutzen

◦ DeploySite-Einstellungen anpassen oder neu eintragen, falls noch nicht vorhanden:

[DeploySite]
host=localhost
port=18080
--tlsHost=
--tlsPort=
requireAuthentication=0
--reauthEveryXDays=90

• Skript mytism anpassen:

◦ export PRJDIR="/.<projektkuerzel>-syncnode"

◦ export DBNAME="<dbname>-syncnode"

Danach kann, wie in der Admin-Doku unter "Aufsetzen eines syncenden MyTISM-Servers aus
einem Backup des autoritativen Servers" beschrieben, ein Datenbank-Backup der autoritativen
Instanz eingespielt und die beiden Instanzen genutzt werden.

168

	MyTISM - Ein Datenbank- und Anwendungs-Framework
	Inhaltsverzeichnis
	MyTISM: Das 3-Tier-Framework für Ihre Anwendung
	Vorstellung von MyTISM
	Was ist MyTISM?
	Warum MyTISM?
	Historie
	Zukunft?

	Schema
	Funktionsweise
	Vorteile
	Schema-Definition
	Attribute
	Unter-Elemente des Schema-Elements
	Include
	Folder
	ModuleProvider
	ModuleIntegrator
	Module
	Generator
	Type
	Interface
	GDPR*
	GDPRDataCategory
	GDPRBusinessInterest
	GDPRProcessingPurpose
	GDPRProcessingLegalBasis
	GDPRLaw
	GDPRRetentionPurpose

	Entity
	Unter-Element "gdpr" von Entity
	Unter-Element "ui" von Entity
	Unter-Element "lookup" von Entity
	Unter-Element "code" von Entity
	Unter-Element "db" von Entity
	Unter-Element "report" von Entity
	Unter-Element "export" von Entity
	Beispiel für eine Entity-Definition
	Attribut

	Vordefinierte Datentypen für Attribute
	Timespan
	Duration

	Schemapflege / Datenbankupdates
	Liste der durch den UpdateHandler zur Verfügung gestellten Hilfsmethoden

	Coredata-Generator
	Zusätzliche, vorgebaute Strukturelemente

	Der Array Datentyp
	Vordefinierte Arrays von Skalaren
	Verwendung als Attributtyp
	Definition von neuen Arraytypen
	Limitiere die Komponenten
	Parameter
	Vererbung

	Tabellenansicht in der GUI
	Das "AsRelation" Postfix von Array Attributen
	Die virtuelle Entität als virtueller Namensraum
	Zeilen um virtuelle Properties anreichern
	Selbstdefinierte Tabellenansicht in der GUI
	Ansicht in Automatikformularen als String
	ArrayZeilenDelegate / Wrapper

	Verwendung in OQL Queries
	Umgang mit Arrays im Code
	Persistente Array Attribute
	Verfügbare Methoden
	Hinweise
	Hinweise bei v-attrs:

	Persistenzschicht von MyTISM
	Löschen von Daten in MyTISM
	Soft Delete
	Wiederherstellung von "Soft Deleted" Objekten

	Hard Delete (Purge)
	Unterschiede zwischen Soft und Hard Delete im Überblick
	Zusammenfassung

	Sprachunterstützung und Internationalisierung
	Einführung
	Wo wird Mehrsprachigkeit unterstützt und wie benutze ich sie?
	Wie wird die konkrete Zeichenkette für einen Schlüssel gefunden?
	Welche L10nPacks gibt es und wie sind diese organisiert? Wie wird bestimmt, welche L10nPacks nach Texten durchsucht werden?
	Web

	Welches sind die "beteiligten bzw. relevanten Objekte"?
	Wo kommen die (Daten der) L10nPacks her?
	L10n und das Anführungszeichen bzw. Apostroph

	Wichtige Klassen
	Eingabe von L10n-Daten

	Die Formularengine des Solstice Clients
	de.ipcon.form
	Hintergrund
	Das Formular-Objekt
	Eigenschaften
	Auswahl
	Definition

	Fehler und Ursachen
	Compiler-Meldung "Object cannot be null"
	bi-Tabelle kann nicht erstellt werden (nachdem die Datenbank gedropped und recreated wurde)
	Compiler-Meldung "Object bla is null but shouldn’t" (sic)

	Synchronisation der Strukturelemente
	Das Formular "DateiSystemSync"

	Volltextsuche
	Konfiguration im Schema
	Berücksichtigte Daten
	Berücksichtigte Entitäten
	Berücksichtigte Attribute

	Weitere Einstellungen im Schema
	analyzed
	boost

	Formularelemente
	Action
	availableOn
	enabledOn
	initialState
	longDescription
	onAction

	BooleanInputComponent
	Border
	Button
	Canvas
	Chart
	onClick

	CheckBox
	ComboBox
	DateChooser
	Editor
	Element
	Email
	Image
	Label
	Format
	Text
	onClick

	FPanel (abstrakt)
	Skriptvariablen
	onAfterSelectValue
	editableIf
	visibleIf
	OnDrop
	onFocusGained
	onFocusLost
	onRefresh
	onSync

	FInputPanel (abstrakt)
	alsoMandatoryIf

	PDFViewer
	Popup
	Scheduler
	SimpleTimespanChooser
	Tab
	TabbedView
	Table
	Column
	headerRenderer und renderer

	DetailView

	MultipleChoiceFilterGUI
	Text
	StyledText
	TimeSelector
	ToggleButton
	Tree
	Uri
	View

	Datenaustausch
	Import
	Export
	Excel

	Lokale autoritative sowie synchronisierende Instanzen zum Entwickeln aufsetzen

