
MyTISM - Ein Datenbank- und
Anwendungs-Framework

Inhaltsverzeichnis
Einleitung . 1

MyTISM: Ein starkes Fundament für Ihre Anwendung . 2

Vorstellung von MyTISM . 3

Was bedeutet der Name "MyTISM"? . 4

Warum MyTISM? . 5

Was ist MyTISM genau? . 6

Was bringt die Zukunft? . 7

SOLSTICE - der Client . 8

Grundlagen . 9

Ansicht der Benutzeroberfläche . 9

Bereiche des Hauptfensters . 9

Mehrfachfenstermodus . 10

Navigationsbaum . 10

Aussehen und Position von Elementen . 10

Sichtbarkeit von Elementen . 10

Strukturelemente . 10

Arbeiten mit Strukturelementen . 15

Anzeige von Objekten (BOs) . 15

Export der Daten aus einem Lesezeichen. 15

Kopieren eines Objektes aus einem Lesezeichen . 16

Anordnen und Organisieren von Strukturelementen . 16

Erstellen und Bearbeiten von Strukturelementen . 17

Glossar . 17

Referenz Tastaturkürzel . 18

Sichern und Wiederherstellen von Strukturelementen . 18

Ausführung von Skripts bei Server-Ereignissen . 20

Lesezeichen . 21

Sortierung . 21

Sortierung nach einer Spalte . 21

Sortierung nach mehreren Spalten . 22

Vordefinierte Sortierung . 22

Suchmöglichkeiten . 22

Volltextsuche . 23

Interaktive Filter . 23

Definition von Filtern allgemein . 23

Texteingabefelder (type="string") . 24

Eingabefelder für Zahlen (type="decimal") . 26

Eingabefelder für Datumswerte (type="date") . 26

Checkboxen zur Ja/Nein/Egal-Auswahl . 27

Auswahlboxen zur Auswahl aus mehreren Optionen . 28

Statische Multiple-Choice-Filter . 28

Dynamische Multiple-Choice-Filter mit choiceQuery . 29

Dynamische Multiple-Choice-Filter mit choiceScript . 31

Trenner . 31

OQL-Klauseln . 32

Beispiele . 32

Volltextsuche auf zusätzliche Felder ausdehnen . 33

Fest eingestellte Filter . 34

Eigene Query-Schablone . 35

Bedingungsgruppen ("constraint groups"). 35

Massenänderungen / Skripting . 37

"Transform Scripts" für die Abfrageresultate. 39

Das Query-Element . 40

Abfrage von Entitäten die ein bestimmtes Interface implementieren . 41

Benutzung von GUI-Filtern bei Nutzung von withInterface . 42

Flag excludeOtherInterfaces für GUI-Filter . 43

Formulare . 44

Eingabemöglichkeiten nach Datentypen. 44

Timespan (Zeitspanne) . 44

Altes Standardformat . 44

"Doppelpunkt"-Format(e) . 45

"Marker"-Format(e) . 46

Diverses . 46

Pivot-Modus (Beta) in MyTISM verwenden. 48

Verfügbarkeit und Vorbereitung . 48

Pivot-Modus starten und beenden . 48

Datenanalyse in der Pivot-Ansicht . 48

Allgemeine Analyseschritte:. 49

Interpretation der Ergebnisse . 49

Schablonen . 50

Erzeugen des neuen Objektes. 50

Reports . 52

Grundlagen . 52

Was ist ein Report überhaupt? . 52

Erstellung eines neuen Reports . 53

(Eingabe-)Parameter für Reports. 57

Die Anker-Definition oder: Wie komme ich an die Daten? . 58

virtualProperties in Reports. 59

Das CBOFormat und seine Verwendung im Report . 60

Troubleshooting. 61

Seitenwechsel / Überlappende Felder / "wachsende" Felder bei dynamischem Text 61

Codebausteine. 62

Einbinden von Codebausteinen. 62

Reiter "CookedParameter", "CookedReportDefinition" sowie "CookedAnkerDefinition" und

"Codebausteine"

 64

Pfadangaben für Codebausteine . 64

Benamsung von Codebausteinen . 64

Inhalt von Codebausteinen . 65

hideComment beim Einbinden eines Codebausteines . 66

Argumente für Codebausteine . 67

Core-Codebausteine . 68

jahrMonatTag.filter . 68

Problembehebung. 69

IllegalArgumentException: Invalid parameter "xyz" given… . 69

Benachrichtigungen. 70

Alarme. 71

Grundlagen . 72

Vorbereitung und Konfiguration . 74

Alarmsystem-Lizenz einspielen. 74

Alarmsystem aktivieren. 74

Sync-Events behandeln . 74

Benachrichtigungssystem aktivieren . 74

Anlegen und Verwalten von Alarmen . 75

Gruppe "Admins Alarmsystem" . 75

Alarme aktivieren und deaktivieren . 75

Testmodus für Alarme . 75

Gemeinsame Eigenschaften aller Alarme . 77

Erster Reiter . 77

Reiter "Erweitert" . 78

Einfacher Termin . 79

Allgemeine Eigenschaften festlegen . 79

Wann soll der einfache Termin stattfinden? . 79

Vorwarnzeit . 80

Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?. 80

BO-basierter Termin . 82

Allgemeine Eigenschaften festlegen . 82

Welche Objekte sollen "überwacht" werden? . 82

Exkurs: Vor- und Nachteile der verschiedenen BOMasken-Typen . 82

Skript . 83

Grooql-BOMasken . 84

OQL-BOMasken . 84

Wann soll der BO-basierte Termin (für ein Objekt) ausgelöst werden? . 85

Auslösedatum aus Objekt-Attribut auslesen . 85

Auslösedatum mit Skript berechnen . 85

Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?. 87

Automatische Neuterminierung nach Auslösung . 87

Anhängen von (weiteren) Objekten . 88

BOBasierterTermin-Status. 89

Hinweise. 90

Allgemeine Eigenschaften festlegen . 90

Welche Objekte sollen "überwacht" werden? . 91

Wann soll der Hinweis ausgelöst werden? . 91

Ignorierte BTs/Änderungen . 91

Auslösung bei beliebiger Änderung, Erstellen oder Löschen von Objekten (Unter-Reiter

"Einfach")

 92

Auslösung mittels Auslösekriterien (Unter-Reiter "Erweitert") . 92

Auslösung mittels Auslöseskript (Unter-Reiter "Skript") . 94

Mindestens eines oder alle gleichzeitig? . 95

Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen? 95

Von wem muss die Änderung stammen? . 95

Ab wann ist der Hinweis aktiv?. 96

Wiedervorlagen . 97

Allgemeine Eigenschaften festlegen . 98

Welche Objekte sollen "überwacht" werden? . 98

Wann soll die Wiedervorlage ausgelöst werden? . 98

Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?. 99

Wiedervorlage-Status . 99

Benachrichtigung bei Alarm-Auslösung . 100

Hartkodierte trigger()-Methode . 100

Benachrichtigungsskript "Sende Benachrichtigungen mittels dieses Skripts", Reiter

"Erweitert"

 100

Standard-Mechanismus . 102

Logging/Historie und AlarmAusloesungen-Objekte . 105

Sonstige Infos . 106

"Verpasste" bzw. "Verspätete" Auslösung . 106

Neuinitialisierung der Objekt-Status für BO-basierten Terminen und Wiedervorlagen 106

CBOFormat. 107

Was ist CBOFormat? . 108

Abweichendes Attribut aus der Attributkette als Label verwenden. 110

Datum und Zeitwert-Formatierung. 111

Zahlen-Formatierung . 113

Funktionsaufrufe. 115

Script-Verwendung . 117

Wo kann man das CBOFormat nun überhaupt einsetzen? . 118

MEX - Makros und erweiterte Query-Funktionen . 119

Definition von MEX . 120

Sichtbare Variablendefinition . 120

Unsichtbare Variablendefinition. 120

Variablenexpansion . 120

Unterstützung auf der Query-Seite . 122

Unterstützung in Solstice . 123

Gruppierung von Filtern . 123

Zukünftige Erweiterungen . 125

Vorbereitung und Konfiguration . 126

Volltextsuche aktivieren . 126

Einstellungen . 126

PostgreSQL: max_locks_per_transaction. 126

Betriebssystem: Mögliche Anzahl gleichzeitig offener Dateien. 126

indexAllByDefault. 126

indexDeletedBOs. 127

spellcheck . 127

fetchSize . 127

maxFieldLength und unlimitedFieldLength . 128

indexPath . 128

maxThreads . 129

directoryWrapper. 130

compassConfig. 130

Der Index . 131

Initiale Erstellung . 131

Erneute Erstellung / Re-Indexierung . 131

Verteilen des Index für synchronisierende Server . 132

Konfiguration für die in den Index aufzunehmenden Daten . 132

Benutzung der Volltextsuche . 133

Standard-Abfragen . 133

Einschränkungen der Entität . 133

Grooql (Groovy Object Query Language) . 134

Sprachumfang . 135

Beispiele für Filterskripte . 136

Einstellungen-Variablen . 137

Definition der vorhandenen/verfügbaren Variablen . 138

Abfrage von Einstellungen-Variablen in Skripten . 139

Setzen von abweichenden Werten für Benutzer oder Gruppen . 140

Lesezeichen und Anzeige in Benutzer- und Gruppen-Formularen. 141

Scripted Attributes . 142

Beispiele für Virtual Properties . 143

Caching. 146

Mögliche Cachemodi . 146

Neuberechnung bei true oder VERSIONED. 146

cached-Angabe direkt im Schema . 147

Positiv-Beispiel. 147

Negativ-Beispiel . 147

Standard-Werte . 149

Initialisierungsskript . 150

Probleme beim Start des Clients . 151

FAQ - Immer wiederkehrende Fragen und deren Beantwortung . 152

Benutzer-Passwort ändern / Change user password / Changer mot de passe 153

Benutzer-Passwort ändern . 153

Change user password . 153

Changer mot de passe . 153

JavaWebstart-Cache löschen unter Windows. 154

Anzeige der Symbole auf SVGs umstellen . 155

Der Windows-Task-Manager zeigt mehr verwendeten Speicher an als der About-Dialog von

MyTISM

 156

Willkommen bei MyTISM!. 158

Warum MyTISM? . 158

Der Solstice-Client: Ihr Arbeitsbereich. 158

Kernfunktionen für Ihre tägliche Arbeit . 158

Ein typischer Arbeitsablauf . 159

Weitere nützliche Funktionen . 159

Hilfe und Support . 160

Tipps für den Einstieg . 160

Welcome to MyTISM! . 161

Why MyTISM? . 161

The Solstice Client: Your Workspace . 161

Core Features for Your Daily Work . 161

A Typical Workflow . 162

Other Useful Functions . 162

Help and Support . 162

Getting Started Tips . 162

Bienvenue dans MyTISM ! . 164

Pourquoi MyTISM ? . 164

Le client Solstice : Votre espace de travail . 164

Fonctionnalités clés pour votre travail quotidien . 164

Un flux de travail typique . 165

Autres fonctions utiles . 165

Aide et Support . 166

Conseils pour démarrer. 166

Wëllkomm bei MyTISM!. 167

Firwat MyTISM? . 167

De Solstice-Client: Ären Aarbechtsberäich . 167

Kärfunktioune fir Är alldeeglech Aarbecht . 167

En typeschen Aarbechtsoflaf . 168

Aner nëtzlech Funktiounen . 168

Hëllef an Support . 169

Tipps fir unzefänken . 169

Einleitung
MyTISM ist ein leistungsstarkes Framework zur Entwicklung und Verwaltung von
Datenbankanwendungen. Es ist plattformunabhängig, objektorientiert, dezentral, multiuserfähig,
individuell anpassbar und quelloffen. Mit MyTISM erhalten Sie ein 3-Tier-System inklusive GUI und
Web-Application-Server, das Ihnen die Arbeit erheblich erleichtert. Es bietet eine umfassende
Sammlung von Tools und Funktionen, die dabei helfen, komplexe Anwendungen effizient zu
erstellen und zu verwalten. MyTISM wird entwickelt und betreut von der OAshi S.à r.l.

Dieses Handbuch führt Sie in die Grundlagen von MyTISM ein und zeigt Ihnen, wie Sie das
Framework optimal nutzen und die damit erstellten Anwendungen bedienen.


Dieses Handbuch befindet sich noch in der Entwicklung. Wir arbeiten
kontinuierlich daran, es zu vervollständigen und zu verbessern.

Bei Fragen, Problemen oder Anregungen kontaktieren Sie uns gerne über https://www.mytism.de/#
contact.

1

https://www.oashi.com
https://www.mytism.de/#contact
https://www.mytism.de/#contact

MyTISM: Ein starkes Fundament für Ihre
Anwendung
Stellen Sie sich vor, Sie bauen ein Haus. MyTISM ist wie das Fundament, die Wände und das Dach,
die Ihrem Haus Stabilität und Flexibilität geben. Es ist ein Framework, das Entwicklern hilft,
Anwendungen zu erstellen, die zuverlässig, anpassungsfähig und einfach zu warten sind.

MyTISM teilt die Anwendung in drei Bereiche auf:

1. Das Aussehen (Frontend): Hier geht es um alles, was der Benutzer sieht und mit dem er
interagiert, wie z.B. Buttons, Menüs und Formulare.

2. Die Funktionen (Middleware): Hier wird festgelegt, was die Anwendung tut, z.B. Daten
verarbeiten, Berechnungen durchführen oder Informationen anzeigen.

3. Die Daten (Backend): Alle wichtigen Daten werden hier sicher gespeichert und verwaltet.

Was sind die Vorteile von MyTISM?

• Übersichtlich und organisiert: Wie ein gut aufgeräumtes Haus ist der Code der Anwendung
strukturiert und leicht verständlich.

• Flexibel und anpassbar: Änderungen an einem Teil der Anwendung haben keine großen
Auswirkungen auf andere Teile. So kann die Anwendung leichter an neue Anforderungen
angepasst werden.

• Stabil und zuverlässig: MyTISM sorgt dafür, dass Ihre Anwendung robust und
wartungsfreundlich ist.

Mit MyTISM bauen Entwickler Anwendungen, die wie ein solides Haus stabil, flexibel und
zukunftssicher sind.

2

Vorstellung von MyTISM

3

Was bedeutet der Name "MyTISM"?
MyTISM steht für "My Tool Is My…".

Sie können den Satzanfang mit dem ergänzen, was Ihnen am wichtigsten ist.
Zum Beispiel:

• My Tool Is My Solution: Mein Werkzeug ist meine Lösung.

• My Tool Is My Key To Success: Mein Werkzeug ist mein Schlüssel zum Erfolg.

• My Tool Is My Inspiration: Mein Werkzeug ist meine Inspiration.

MyTISM versteht sich dabei als universelles Software-Werkzeug.

4

Warum MyTISM?
Die Idee zu MyTISM entstand schon im August 2000. Doch dazu später mehr.

Stellen Sie sich vor, Sie möchten ein Haus bauen. Sie könnten natürlich jeden einzelnen Ziegelstein
selbst formen und jeden Nagel von Hand schmieden. Aber es ist viel einfacher, fertige Ziegel, Nägel
und Werkzeuge zu verwenden, oder?

Genauso ist es bei der Softwareentwicklung. Es gibt viele fertige "Bausteine" (Frameworks), die man
verwenden kann, um Programme zu erstellen. Warum also haben wir uns die Mühe gemacht,
MyTISM, unser eigenes Framework, zu entwickeln?

Ganz einfach: Weil wir keine passenden "Bausteine" gefunden haben, die all unsere Anforderungen
erfüllt hätten. Damals haben wir festgestellt, dass die herkömmliche Art, Datenbankanwendungen
zu entwickeln, sehr umständlich und fehleranfällig ist. Wir wollten einen besseren Weg finden, um
Daten zu speichern und zu verwalten. Wir brauchten etwas, das flexibel, leistungsstark und einfach
zu bedienen ist. Also haben wir angefangen, unsere eigenen "Bausteine" zu bauen.

Nach vielen Experimenten und Tests haben wir schließlich MyTISM entwickelt. Es basiert auf dem
Prinzip der Objektorientierung und ermöglicht es uns, Daten als Objekte zu behandeln. Dadurch
wird die Entwicklung von Datenbankanwendungen viel einfacher und intuitiver.

Und das Ergebnis kann sich sehen lassen! MyTISM ist das Herzstück unserer Softwareentwicklung.
Es ist ein robustes und flexibles Framework, mit dem wir schnell und effizient maßgeschneiderte
Software für unsere Kunden entwickeln können.

5

Was ist MyTISM genau?
MyTISM ist ein Java-basiertes Anwendungsframework mit integrierter Datenbankunterstützung. Es
besteht aus einem oder mehreren miteinander verbundenen Servern (inkl. PostgreSQL-Datenbank)
und Clients, die über das Netzwerk darauf zugreifen. Der Hauptclient, Solstice, bietet eine grafische
Benutzeroberfläche mit umfangreichen Konfigurationsmöglichkeiten.

MyTISM ermöglicht die Entwicklung von Webanwendungen, die auf das MyTISM-System zugreifen,
und bietet Funktionen zur Erstellung von Berichten, zur Verwaltung von Benutzerrechten, zur
Versendung von Benachrichtigungen, zur Reaktion auf Ereignisse mittels seines Alarmsystems und
zur Automatisierung von Aufgaben via eigener Dienste.

MyTISM entstand aus der Vision, ein Framework zu schaffen, das die Lücken bestehender
Lösungen schließt und eine wirklich integrierte und effiziente Entwicklungsumgebung bietet.
MyTISM wurde aus der Notwendigkeit heraus geboren, komplexe Datenbankanwendungen zu
vereinfachen und zu beschleunigen. Es ist das Ergebnis jahrzehntelanger Erfahrung und
Entwicklung und bietet eine einzigartige Kombination von Funktionen und Flexibilität.

6

Was bringt die Zukunft?
MyTISM ist nicht stehen geblieben! Wir haben es ständig verbessert, neue Funktionen hinzugefügt
und es noch leistungsstärker gemacht. Es hat sich schon in Projekten aus verschiedensten
Bereichen vom Einzelhandel bis hin zur Industrieproduktion bewährt.

Und keine Sorge, wir haben noch viele Ideen, wie wir MyTISM in Zukunft noch besser für Sie
machen können!

7

SOLSTICE - der Client
Solstice ist ein Frontend bzw. eine Benutzeroberfläche für MyTISM - oder besser gesagt, das
Frontend, auch wenn, dank der modularen Bauweise von MyTISM, andere Frontends ohne
weiteres möglich sind.

8

Grundlagen
FIXME TODO Solstice Client starten

Ansicht der Benutzeroberfläche
Die folgende Abbildung zeigt die Solstice-Oberfläche für den Benutzer "ERPTest".

Abb. 1: Ansicht des Hauptfensters des Solstice-Clients im Einfenstermodus

Bereiche des Hauptfensters

Die Menüleiste befindet sich am oberen Rand des MyTISM-Solstice-Fensters. Nach Auswahl einer
Menükategorie öffnet sich ein Untermenü mit weiteren Einträgen. (Ein schwarzer Pfeil zeigt an,
dass das Menü noch weiter geschachtelt ist.) Die einzelnen Menüpunkte lassen sich entweder durch
Klicken anwählen oder durch Tastaturkürzel aufrufen.



In jedem Hauptmenüpunkt ist ein Buchstabe unterstrichen. Tippt man diesen
Buchstaben mit gedrückter "ALT"-Taste ein, öffnet sich das Untermenü. Die Kürzel
zum Öffnen der Unterpunkte werden am rechten Rand der Menüpunktzeile
angezeigt.

FIXME TODO weitere Beschreibung der Menüleiste (Kürzel, "2. Reihe" m. bildl. Symbolen
beschreiben).

Unterhalb der Menüleiste auf der linken Seite ist der Navigationsbaum zu finden. Auf der freien

9

Fläche rechts davon werden die geöffneten sogenannten Strukturelemente angeordnet.

Mehrfachfenstermodus

Neben dem in der Abbildung gezeigten klassischen Einzelfenstermodus kann Solstice über die
Menüleiste über den Menüpunkt (Datei → zum Mehfachfenstermodus wechseln) alternativ im
Mehrfachfenstermodus geöffnet werden. So wird jedes Element in einem eigenen Fenster geöffnet
und kann frei angeordnet werden (u.a. lassen sich so die Elemente über mehrere Monitore
verteilen und dort beliebig vergrößern).

Navigationsbaum

Der Navigationsbaum stellt eine wichtige Komponente der Solstice-Benutzeroberfläche dar, indem
er für den jeweiligen Benutzer den Zugriff auf die für ihn verfügbaren Elemente strukturiert und
somit eine benutzerspezifische Systemübersicht bietet.

Angezeigt werden im Navigationsbaum generell:

• Strukturelemente (Ordner,Lesezeichen, Schablonen, Formulare, Reports und Aliase darauf)

◦ virtuelle Ordner

▪ ein virtueller Ordner für den angemeldeten Benutzer

▪ für Administratoren ein virtueller Ordner mit allen Benutzern

▪ und nach dem Suchen von Strukturelementen ein virtueller Ordner mit Unterordnern
für die Suchergebnisse.

Aussehen und Position von Elementen

Im Normalfall werden Elemente in Ordnern alphabetisch sortiert; es ist jedoch möglich, eine
gewünschte Reihenfolge manuell festzulegen, indem man für das Element eine gewünschte
Position einträgt. Elemente mit Position werden in der dadurch angegebenen Reihenfolge und vor
allen Elementen ohne Position angezeigt.

Es ist außerdem möglich, Elemente durch zuweisen einer Hintergrundfarbe besonders
hervorzuheben. Die Farbe muss HTML-kodiert angegeben werden.

Sichtbarkeit von Elementen

Welche Strukturelemente im Navigationsbaum für einen angemeldeten Benutzer sichtbar sind,
wird von mehreren Faktoren gesteuert; u.a. im Zusammenspiel mit den von der
[Rechteverwaltung] vergebenen Rechten.

Strukturelemente

Strukturelement ist der Oberbegriff für alle Elemente der Benutzeroberfläche, mit denen man Daten
anzeigen und manipulieren kann. Dies sind Lesezeichen, Formulare, Schablonen, Codebausteine,
Reports sowie Aliase und Ordner.

10



technischer Hintergrund:
MyTISM speichert die Daten in einer objektorientierten Datenbank.
Datenelemente eines Typs werden jeweils in einer Datenbanktabelle
zusammengefasst. Dabei können die Daten in einer Eltern-Kind Hierarchie
angeordnet werden, so dass die Eigenschaften der übergeordneten Struktur auch
für die 'Kindtabelle' gelten.
Beispiel: mögliche (Tabellen-)hierarchie für Belege:

Beleg → DebitorenBeleg → Rechnung → Endabrechnung
 Beleg → DebitorenBeleg → Auftrag

Wird für Objekte (- in MyTISM auch [BO]s genannt -) des Typs Beleg die
Eigenschaft Adressat festgelegt, haben automatisch auch beispielsweise Datensätze
des Typs Endabrechnung und Auftrag jeweils einen Adressaten.

Für Endanwender sind von den im folgenden beschriebenen Strukturelementen möglicherweise
nur Lesezeichen, Formulare (bzw. die Aliase hierauf) und Reports interessant, während
Schablonen und Codebausteine nur für diejenigen Anwender relevant sind, die selbst
Strukturelemente (weiter-)entwickeln möchten.

Lesezeichen

Symbol Beschreibung

Lesezeichen zeigen in Tabellen- bzw Listenform eine Menge von Objekten (BOs) an. Die
angezeigten Daten kann man mittels der Query-Zeile noch weiter einschränken / filtern
(siehe "[Suchfunktion]").


Technisch gesprochen, handelt es sich bei einem Lesezeichen um eine
gespeicherte Abfrage. Angezeigt werden alle Objekte aus einer Tabelle,
die nicht als gelöscht markiert sind.

Formular

Symbol Beschreibung

Bei einem Formular handelt es sich um die Definition bezüglich der Darstellung von
Daten:
In einem Formular werden einzelne Objekte angezeigt, können dort aber auch
bearbeitet oder neu angelegt werden. Durch das Formular wird festgelegt, in welchen
Feldern die einzelnen Werte angezeigt werden, wie diese Felder angeordnet sind, usw.

Schablone

Symbol Beschreibung

Bei einer Schablone handelt es sich um die "Bauanleitung" für ein neues Objekt:
Die Schablonendefinition legt fest, von welchem Typ das neu erzeugte Objekt sein soll
und mit welchem Formular es dargestellt und bearbeitet werden soll.

11

Codebaustein

Symbol Beschreibung

Bei einem Codebaustein handelt es sich um ein eher technisches Strukturelement für
Entwickler, das für den reinen Endbenutzer eher uninteressant ist, da es nicht direkt
angezeigt wird:
Ein Codebaustein ist im Prinzip ein Stück XML-Quellcode, welches man mit einer
entsprechenden Anweisung in den Quellcode eines anderen Strukturelements
einbinden kann. Dies dient dazu, doppelten Code zu vermeiden und gleiche, oft
benötigte Quelltext-Teile zentral verwalten und ändern zu können.

Report

Symbol Beschreibung

Reports bieten Daten in einer druckbaren Form an. Möchte man z.B. eine Rechnung
drucken, dann muss man das Aussehen und die Anordnung der Rechnungsdaten in
Form eines Reports einmal definieren und kann fortan diesen für den Ausdruck (oder
die Erstellung eines PDFs) verwenden.
Reports werden in einem eigenen Kapitel ausführlicher beschrieben.

Alias

12

13

Symbol Beschreibung

[solstice Definition:
Bei einem Alias handelt es sich um einen Verweis auf ein Strukturelement.
Verwendung:
Aliase können im Kontextmenü eines Elements im Navigationsbaum mittels dem Befehl
Verlinken bzw. dem Tastaturkürzel STRG+L erzeugt werden und mittels Einfügen bzw.
STRG+V an einer anderen Stelle im Navigationsbaum eingefügt werden. In der Praxis
werden Aliase beispielsweise dazu genutzt, benutzer- bzw. rollenspezifische Ordner zu
füllen. Ein 'Benutzerordner' dient dem jeweiligen Benutzer als zentrale, schnell
zugreifbare Ansicht für die für ihn freigegebenen Strukturelemente, während das
Originalstrukturelement an zentraler Stelle abgelegt ist.



Aliase sind nicht zu verwechseln mit vollwertigen Kopien - ein Alias
verweist immer auf ein Original und erbt dessen Rechte. Beim
Doppelklick auf den Alias öffnet sich das Original, während eine Kopie
natürlich ein eigenständiges Objekt ist, das separat gepflegt werden
muss. (Ähnlich wie eine Kopie, aber das Objekt wird nicht wirklich
kopiert; es wird lediglich ein "Verweis" auf das Originalobjekt. Alle
Änderungen, die an einem der beiden vorgenommen werden, wirken
sich auf "das andere" aus.

14

alias
Arbeiten mit Strukturelementen

Anzeige von Objekten (BOs)

Ein typischer, einfacher Arbeitsablauf, um ein Objekt anzusehen, beginnt häufig mit der Auswahl
eines Lesezeichens im Navigationsbaum. Ein Doppelklick auf einen im Lesezeichen angezeigten
Listeneintrag öffnet das dort beschriebene Objekt im zugehörigen Formular.



Es können mehrere Formulare für Objekte eines Typs existieren. Jedem Formular
ist eine Priorität und ein BO-Typ zugewiesen. Sollten also mehrere Formulare
existieren, mit denen das Öffnen des ausgewählten Objekts möglich ist, wird das
Formular mit der höchsten Priorität gewählt. Haben mehrere passende Formulare
die gleiche Priorität, wird das Formular bevorzugt, das vom BO-Typ her besser auf
das zu öffnende Objekt passt, d.h. einem spezielleren passenden BO-Typen
zugeordnet ist. Sollte es danach immer noch mehrere Formulare geben, die
passen, wird zuerst nach Name und bei Gleichheit nach Id sortiert, um ein
eindeutiges Formular zu bestimmen. Mit Hilfe der rechten Maustaste kann man
sich alle (auf Grund der jeweiligen Berechtigung sichtbaren) zur Verfügung
stehenden Formulare anzeigen lassen. So ist es auch möglich, ein Formular mit
einer niedrigeren Priorität oder für einen allgemeineren BO-Typen auszuwählen.

Export der Daten aus einem Lesezeichen

Es ist möglich die selektierten Daten aus einem Lesezeichen in eine Datei zu exportieren. Zur
Auswahl steht das CSV- oder das XLS Format. Dazu werden zuerst die gewünschten Daten
selektiert. Nach einem Klick auf die rechte Maustaste erscheint das entsprechende Kontextmenü.

Neben diversen Einstellungsmöglichkeiten bietet der CSV Export noch folgende Features:

• Die zur Auswahl stehenden Codepages können durch eine Einstellungsvariable vorgegeben
werden. Hierzu existiert eine Variable mit dem Namen csvExport.codepages (diese wird vom
Server implizit beim Start angelegt, sofern noch nicht vorhanden). Als Wert erhält diese
Variable eine Liste von Codepages, welche durch ein Komma getrennt sind, z.B.: UTF-8,Windows-
1252,ISO-8859-1,ISO-8859-15. Der erstgenannte Wert ist der Default.

• Die Einstellungen des CSV Exportes werden lokal für den jeweiligen Benutzer gespeichert. Beim
nächsten Mal sind diese standardmäßig vorgewählt.

• Zum Abspeichern wird ein Dateiname vom System vorgeschlagen. Dieser besteht aus dem
Entität-Namen der zu exportierenden Tabelle, der aktuellen Uhrzeit und der Dateiendung .csv.

15

folder] |

Kopieren eines Objektes aus einem Lesezeichen

Aus dem Kontextmenü eines Lesezeichen kann ein BO kopiert werden.
Damit der Menüpunkt zur Verfügung steht, muss dem jeweiligen Benutzer (bzw. einer Gruppe des
Benutzers) eine Schablone für den zu kopierenden Objekttyp zugewiesen sein.

Anordnen und Organisieren von Strukturelementen

Strukturelemente können in Solstice zwischen verschiedenen Ordnern verschoben und kopiert
werden, und es können sog. [alias]>Aliase (Verknüpfungen) angelegt werden. Dies geschieht
üblicherweise über den Navigationsbaum, indem man mit der linken Maustaste auf das
Strukturelement anwählt und es - mit weiterhin gehaltener Maustaste - an die gewünschte Stelle
"zieht".

Hält man beim Loslassen keine weitere Taste gedrückt, wird eine Verknüpfung erstellt. Hält man
beim Loslassen die Taste STRG gedrückt, so wird das Objekt verschoben; hat man die Taste ALT
gedrückt, so wird das eine Kopie des Objekts an dieser Stelle angelegt. Automatik-Elemente können
nur kopiert werden; einen Alias zu erstellen oder das Element zu verschieben wird komplett
ignoriert.

16

Erstellen und Bearbeiten von Strukturelementen

Die Lesezeichen-, Formular- und Schablonen selbst können bearbeitet werden, indem man
entweder das Strukturelement anwählt und ALT+EINGABE drückt oder im Kontextmenü des
Objekts (Objekt anwählen, rechte Maustaste drücken) den Menüpunkt Information wählt.
Voraussetzung zum Editieren sind Schreibrechte, die durch den Systemadministrator für jeden
Benutzer pro BO vergeben werden können.

Glossar
FIXME Verschieben ans Ende der User-doku. Es handelt sich hier nicht (nur) um Solstice-spezifische
Begriffe, sondern um solche, die für das Verständnis von MyTISM im allgemeinen wichtig sind.
Eigenes .ad-Dokument hieraus erzeugen

BO / CBO / SBO

BO ist die Abkürzung für "Business Object" - jedes Objekt ("Datensatz") in MyTISM ist ein BO.
Jedes BO hat einen BO-Typ, welcher die Eigenschaften des BOs definiert.
Beispiel
Eine "Person" ist ein BO vom Typ "Person" und hat z.B. die Felder "Vorname", "Nachname",
"Geschlecht", …
BOs werden der Übersichtlichkeit halber nochmal unterteilt in "Complex Business Object" (CBO)
und "Simple Business Object" (SBO). Quertabellen wie z.B. "Geschlecht", die nur wenige Einträge
(wie in diesem Fall "männlich" und "weiblich") haben, sind typische Vertreter für ein SBO. Eine
"Rechnung" ist da schon was komplexeres und demzufolge vom Typ "CBO".

Quertabelle

Quertabellen sind Nachschlagetabellen, die hauptsächlich vorinitialisierte Daten enthalten. Es
handelt sich hierbei häufig um für das System zentrale Daten, die sich selten ändern und deren
Werte bereits bekannt sind. Ein typisches Beispiel für solche Daten sind Einheiten. Zentrale
Einheiten wie bestimmte Maßeinheiten und Gewichte (Gramm, Kilogramm etc.) werden bereits
durch das ERP-Modul bereitgestellt. Solche vordefinierten Quertabellen können aber prinzipiell
durch berechtigte Benutzer jederzeit erweitert werden.

Schema

FIXME (Entscheiden, ob dieser Begriff hier aufgenommen wird; evtl zu technisch u. eher f.
Developer-Doku relevant)

Virtual Attributes / Scripted Attributes

MyTISM bietet die Möglichkeit, im laufenden Betrieb Datenfelder in Formulare, Lesezeichen und
Reports nachzubauen. Diese nennt man Virtual Attributes oder auch Scripted Attributes.

Für alle im Schema der jeweiligen MyTISM-Installation definierten BOs werden beim Start des
Servers automatisch jeweils ein Lesezeichen (das alle BOs der entsprechenden Klasse anzeigt)
sowie ein Formular und eine Schablone erstellt. Daneben existieren für manche Klassen auch noch
angepasste, "schönere" vorgebaute Strukturelemente, die ebenfalls automatisch eingespielt
werden.

17

Referenz Tastaturkürzel
to be continued

F2

Funktion: Speichern
Wo: Formular

F3

Funktion: Speichern und Schliessen
Wo: Formular

F4

Funktion: Popup aufklappen
Wo: Formular

F5

Funktion: Aktualisierung der Daten/Anzeige
Wo: Lesezeichen, Menü-Baum

ESC

Funktion: Ansicht schliessen
Wo: Formular, Lesezeichen

STRG-F

Funktion: Suchen (Strukturelemente: Formular, Lesezeichen, Report, …)
Wo: überall

STRG-S

Funktion: Speichern
Wo: Formular

Sichern und Wiederherstellen von Strukturelementen
Unter dem Menüpunkt Entwicklung gibt es die Funktion Struktur-Synchronisation…. Hiermit
werden alle Strukturelemente (Formulare, Lesezeichen, Schablonen, Reports, etc.), bei denen ein
(im Prinzip frei wählbarer) Dateiname definiert ist als XML-Dateien in einem Verzeichnis
gespeichert bzw. Strukturelemente aus diesen Dateien wieder in die Datenbank eingespielt.

18

images/g

Die Bedienung sollte größtenteils selbsterklärend sein.

• Mit den diversen Filtern ist es möglich, die Liste nach vorgegebenen Kriterien auszudünnen.

• Unter Meldungen kann man die Anzeige der Log-Meldungen aktivieren und angeben, wie genau
man dort über die Vorgänge informiert werden will.

• Der Knopf Vergleichen erlaubt es, die Liste manuell zu aktualisieren.

• Der Knopf Alles synchronisieren exportiert bzw. importiert automatisch alle Strukturelemente,
abhängig von ihrem Status und speichert danach auch automatisch die entstandenen
Änderungen ab.

• Sync automatisch durchführen überwacht Datenbank und Verzeichnis selbsttätig auf
Änderungen und synchronisiert diese automatisch. FIXME: Es kann sein, dass das noch nicht
ganz korrekt funktioniert - Funktion wird fast nie benutzt.

Damit die exportierten Objekte auch einigermassen geordnet in Unterverzeichnissen liegen, die
ihrem Ordnernamen in Solstice entsprechen, sollte man dies im Dateinamen mit angeben. So
würde man für das Formular "MeinFormular", welches im Ordner "EigeneFormulare" liegt z.B.
folgenden Dateinamen eintragen: EigeneFormulare/MeinFormular. Die vorgebauten Formulare für
Strukturelemente bieten einen Knopf "Dateiname vorschlagen" mit welchem man einen aus dem
Elterpfad generierten Dateinamen automatisch eintragen lassen kann.

Die exportierten Objekte enthalten je nach Typ folgende Kürzel:

• bkm: Lesezeichen (für engl. "Bookmark")

• frm: Formular (für engl. "Form")

• tpl: Schablone (für engl. "Template")

19

uieleme

• rpt: Report (für Reports werden aus technischen Gründen übrigens zwei Dateien abgespeichert,
die zweite der beiden Dateien hat gar kein "Mittelkürzel")

• bst: Codebaustein



Beim Sync der AnkerDefinition von Reports werden mehrfache Leerzeichen
zwischen XML-Attributen von Tags nicht beim Diff beachtet. Außerdem werden
Kommentare außerhalb des Wurzelknotens (ganz am Anfang oder ganz am Ende
des XML-Dokuments) ignoriert.

Ausführung von Skripts bei Server-Ereignissen
Im Normalfall werden bei Server-Ereignissen, wie Herunterfahren oder Systemnachrichten
voreingestellte Aktionen ausgeführt; meist wird (nur) eine Nachricht angezeigt. Mittels im
Benutzer-Profil definierter Skripts kann man jedoch auch in anderer Weise auf diese Ereignisse
reagieren. Beispiel:

<Configuration>
 <Profile name="default">
 <onSystemMessage>_client.log.warn("Systemmessage: " + _msg +
".")</onSystemMessage>
 <onShutdownInitiated>_client.log.warn("Shutdown initiated: " + _msg + " in " +
_cSecsDelay + " seconds.")</onShutdownInitiated>
 <onShutdownStopped>_client.log.warn("Shutdown stopped.")</onShutdownStopped>
 <onShutdown>_client.log.warn("Server has been shut down.");
_client.close()</onShutdown>
 <!-- Sonstiger Profil-Code -->
 </Profile>
</Configuration>

Folgende Möglichkeiten stehen zur Verfügung:

• onSystemMessage: Wird aufgerufen, wenn eine Systemnachricht angekommen ist. Die Variable
_msg enthält den Nachrichtentext.

• onShutdownInitated: Wird aufgerufen, wenn die Bennachrichtigung über ein bevorstehendes
Herunterfahren des Servers angekommen ist. Die Variable _cSecsDelay enthält die Anzahl der
Sekunden, die das Herunterfahren noch entfernt ist; _msg enthält ggf. den Text einer
zusätzlichen Information zum Herunterfahren, sofern einer mitgeliefert wurde.

• onShutdownStopped: Wird aufgerufen, wenn das Herunterfahren aus irgendeinem Grund
abgebrochen wurde.

• onServerLocked: Wird aufgerufen, wenn der Server gesperrt (keine Anmeldungen mehr
erlaubt) wurde.

• onServerUnlocked: Wird aufgerufen, wenn der Server wieder entsperrt wurde.

20

Lesezeichen
"Lesezeichen" ist die MyTISM-Bezeichnung für vordefinierte Datenbank-Abfragen in der Solstice-
Benutzeroberfläche.

Im einfachsten Fall können in einem Lesezeichen bestehende Objekte aus der Datenbank mit einer
(eingeschränkten) Volltextsuche gesucht und in Tabellenform angezeigt werden.

Neben der Suche mit Suchbegriffen können auch zusätzliche sog. Filter definiert werden, die z.B.
über eine Auswahlliste eine weitere Einschränkung der Suchergebnisse ermöglichen.

Für jedes Lesezeichen ist festgelegt, welcher Typ von Objekten damit abgefragt werden kann, wobei
im Normalfall dann natürlich auch alle ggf. definierten Untertypen eingeschlossen sind.

Die gefundenen Objekte können dann aus dem Lesezeichen heraus zur Detailansicht oder
Bearbeitung geöffnet werden.

Außerdem können mittels sog. Massenänderung Datenänderungen an mehreren oder allen der
gefundenen Objekte gleichzeitig vorgenommen werden.

Die in der Tabelle angezeigten Daten der Objekte können als CSV- oder Excel-Datei exportiert oder
in die Zwischenablage kopiert werden.

Weiterhin können spezielle Aktionen definiert werden, die dann mit mehreren oder allen der
Objekte vorprogrammierte Dinge tun.



Bei den meisten Werten für XML-Elemente und -Attribute für die XML-Definition
des Lesezeichens ist die Groß-/Kleinschreibung wichtig und sie sollten genau so
eingegeben werden, wie hier aufgeführt. "Historisch gewachsen" ist die
Schreibweise leider nicht einheitlich und so müssen manche Werte groß und
manche klein geschrieben werden.


Die meisten der hier beschriebenen Möglichkeiten sind nicht nur in Lesezeichen,
sondern allgemein in allen Table-XML-Elementen verfügbar; so insb. z.B. auch in
der Auswahlliste von GUI-Auswahlboxen (<Popup …).

Sortierung
Die in Lesezeichen angezeigten Ergebnisse können nach Wunsch sortiert werden.

Sortierung nach einer Spalte

Soll nur nach einer Spalte sortiert werden, kann man hierzu einfach mit der Maus auf den Titel der
Spalte klicken. Ein weiterer Klick kehrt die Sortierreihenfolge um. Ein weiterer Klick hebt dann
wieder die Sortierung dieser Spalte auf.

21

#solstice_lesezeichen_volltextsuche

Sortierung nach mehreren Spalten

Auch eine Sortierung nach mehreren Spalten ist möglich; hält man beim Klick auf einen
Spaltennamen die STRG/CTRL-Taste gedrückt, so werden bisher definierte Sortier-Spalten
beibehalten.

Die Ergebnisse werden zuerst nach der zuerst ausgewählten Spalte sortiert; wenn für Objekte der
Wert dieser Spalte gleich ist, werden diese Objekte dann nach der als zweites ausgewählten Spalte
sortiert; usw.

Die Reihenfolge, in der die Spalten sortiert werden, ist anhand der Größe der Symbole zu erkennen;
nach der Spalte mit dem größten Symbol wird zuerst sortiert.

Vordefinierte Sortierung

Es ist möglich, eine Sortierung dauerhaft bzw. als Standard-Einstellung im Lesezeichen zu
definieren.

Hierzu wird die Spaltendefinition innerhalb der Tabellendefinition erweitert. Wird die
Kurznotation der Tabellenspalten genutzt, können die Schlüsselwörter ASC (für aufsteigende
Sortierung, also kleiner → größer, älter → jünger oder A → Z) und DESC (für absteigende Sortierung,
also größer → kleiner, jünger → älter oder Z → A) durch Komma getrennt hinter den
Attributnamen geschrieben.

Die Reihenfolge bzw. Priorität der Sortierung kann als Zahl direkt hinter ASC oder DESC geschrieben
werden und muss innerhalb der Spaltendefinitionen eindeutig sein.

Beispiel für Standard-Einstellung Sortierung erst absteigend nach Belegdatum, dann aufsteigend nach
Kunde

<Table entity="Rechnung">
 <Query type="Text"/>
 <View>
 <Columns>
 Kunde, ASC2
 Belegdatum, DESC1
 Netto 'Netto-Betrag'
 Brutto 'Brutto-Betrag'
 Bankeinzug
 </Columns>
 </View>
</Table>

In der ausführlichen Notiation für die Spalten werden die XML-Attribute sort und sortLevel in
ähnlicher Weise benutzt.

Suchmöglichkeiten

22

Volltextsuche

In der Eingabezeile oberhalb der Tabelle können Suchbegriffe eingegeben und durch Drücken von
Return/Enter die Volltextsuche gestartet werden. Es werden alle Objekte des vordefinierten Typs
gefunden, bei denen einer der eingegebenen Begriffe in einem der Text- oder Zahlenfelder des
Objekts vorkommt.


Neben der vordefinierten Menge an Feldern können außerdem zusätzliche Felder
definiert worden sein, die dann ebenfalls durchsucht werden.

Wenn man direkt vor einem Suchbegriff ein Pluszeichen + eingibt bedeutet das, dass der Begriff
vorkommen muss.

Ein direkt vorangestelltes Minuszeichen - bedeutet umgekehrt, dass der Begriff nicht vorkommen
darf.

Interaktive Filter

Neben der Volltextsuche können Lesezeichen mit zusätzlichen Eingabemöglichkeiten ausgestattet
werden, mit denen weitere Einschränkungen für die Ergebnismenge definiert werden.

Es gibt mehrere Typen dieser sogenannten Filter:

• Texteingabefelder

• Eingabefelder für Zahlen

• Eingabefelder für Datumswerte

• Checkboxen zur Ja/Nein/Egal-Auswahl

• Auswahlboxen zur Auswahl aus mehreren Optionen

Definition von Filtern allgemein

Alle diese Filter können mittels <filter>-Kindelementen des <Query>-Elements erzeugt werden und
werden dann als Eingabefeld, Checkbox, usw. im Lesezeichen angezeigt.

Beispiel für ein Texteingabefeld zur Einschränkung der Ergebnismenge auf Dokumente mit einer
bestimmten Nummer:

<Query type="Text">
 <filter type="string" title="Dokumentnummer" cols="30">
 <clause>Dokumentnummer = "{}"</clause>
 </filter>
</Query>

Folgende XML-Attribute sind dabei für jeden Filtertyp verfügbar:

type

Verpflichtend - Was für ein Typ von Filter erzeugt werden soll; Mögliche Werte sind string für
Texteingabefelder, decimal für Eingabefelder für Zahlen, date für Eingabefelder für

23

#solstice_lesezeichen_zusaetzliche_felder

nts/solst

Datumswerte, bool für Checkboxen zur Ja/Nein/Egal-Auswahl und multipleChoice für
Auswahlboxen zur Auswahl aus mehreren Optionen.

title

(Meist) Optional - Wird als Beschriftung der Filterkomponente benutzt; falls nicht angegeben
wird stattdessen die clause (s.u.) als Titel verwendet.

name

Optional - Wird für einige Fehlermeldungen und im Zusammenhang mit "dependent"-Filtern
benutzt FIXME

variable

Optional - FIXME

group

Optional - Mit diesem Attribut ist es möglich, den Filter einer sog. Bedingungsgruppe
zuzuordnen. Wird es nicht angegeben gehört der Filter zur Standardgruppe, die in der Query-
Schablone mit "{=constraints}" angesprochen wird.

grabFocus

Optional - Kann "true" oder "false" (der Standard) sein; der in der Reihenfolge der Definitionen
erste Filter mit grabFocus="true" erhält nach dem Öffnen des Lesezeichens direkt den
Eingabefokus.

dependsOn

Optional - (FIXME Filter können voneinander abhängen)

Texteingabefelder (type="string")

In "string"-Filtern können Zeichenketten angegeben werden, die in der Suche verwendet werden
sollen.

Folgende XML-Attribute können speziell für "string"-Filter benutzt werden:

cols

Optional - Die bevorzugte Breite des Eingabefeldes, in Zeichen.

Folgende XML-Kindelemente können speziell für "string"-Filter benutzt werden:

clause

Verpflichtend - Die OQL-Klausel, die in die Datenbankabfrage eingefügt wird, wenn in diesem
Filter ein Wert angegeben wird. Innerhalb dieser Klausel kann {} (zwei geschweifte Klammern,
ohne Inhalt) als Platzhalter verwendet werden; hier wird dann bei der Abfrage der im Filterfeld
eingegeben Wert eingesetzt. Bei Verwendung von Bedingungsgruppen können auch mehrere
dieser clause-Elemente für einen Filter verwendet werden, nähere Erklärungen im Abschnitt
Bedingungsgruppen.

ifEmpty

Optional - Eine OQL-Klausel, die in die Datenbankabfrage eingefügt wird, wenn im Filter kein

24

#solstice_lesezeichen_bedingungsgruppen
#solstice_lesezeichen_query_schablone
#solstice_lesezeichen_query_schablone
#solstice_lesezeichen_bedingungsgruppen

ice-alias-

Wert eingegeben wurde oder keine clause definiert wurde.

inputPreprocessor

Optional - In diesem XML-Element kann ein Groovy-Skript angegeben werden, dass die
Benutzereingabe im Filter noch modifizieren kann, bevor sie für die Datenbankabfrage benutzt
wird. Das Skript wird ausgeführt bevor der Platzhalter {} ersetzt wird und muss eine
Zeichenkette zurückliefern, die dann anstelle der ursprünglichen Benutzereingabe verwendet
wird.

Im Skript stehen zwei vordefinierte Variablen zur Verfügung:

• input - Der im Filterfeld eingegebene Wert als String

• bol - Ein BOLoaderI

Beispiel für einen "string"-Filter, in dem ein oder mehrere durch Komma getrennte Dokumentnummern
eingegeben werden können um Dokumente mit einer der eingegebenen Nummern zu finden:

<Query type="Text">
 <filter type="string" title="Dokumentnummern" cols="12">
 <clause>Nummer IN LIST({})</clause>
 <inputPreprocessor>
 // Leerzeichen von den Nummern entfernen, in Hochkommata einschliessen und
wieder als Komma-getrennte Liste zurückgeben.
 input.split(',').collect{ "'${it.trim()}'" }.join(',')
 </inputPreprocessor>
 </filter>
</Query>

Beispiel für einen "string"-Filter, in dem aus der User Eingabe die Nummer extrahiert und mit einem Prefix
für die Suche versehen wird:

<Query type="Text">
 <filter type="string" title="Dokumentnummern" cols="12">
 <clause>Nummer = "{}"</clause>
 <inputPreprocessor>
 // RegEx für Nummern
 def number = /\d+/
 def matcher = (input =~ number)
 // Falls eine Nummer eingegeben wurde, diese extrahieren und mit dem Prefix
'D' versehen für die Eingabe zurückgeben
 matcher.find() ? "D ${matcher[0]}" : input
 // Alternativ als Einzeiler.
 // (input =~ /\d+/).findResult{ "D $it" } ?: input
 </inputPreprocessor>
 </filter>
</Query>

25

Eingabefelder für Zahlen (type="decimal")

In "decimal"-Filtern können Zahlen angegeben werden, die in der Suche verwendet werden sollen.
Im Gegensatz zu "string"-Filtern, bei denen die Eingabe unverändert und ungeprüft übernommen
wird, wird bei "decimal"-Filtern versucht, die Eingabe als Zahl zu interpretieren; falls das nicht
möglich ist, wird eine Fehler angezeigt.

Folgende XML-Attribute können speziell für "decimal"-Filter benutzt werden:

cols

Optional - Die bevorzugte Breite des Eingabefeldes, in Zeichen.

Folgende XML-Kindelemente können speziell für "decimal"-Filter benutzt werden:

clause

Verpflichtend - Die OQL-Klausel, die in die Datenbankabfrage eingefügt wird, wenn in diesem
Filter ein Wert angegeben wird. Innerhalb dieser Klausel kann {} (zwei geschweifte Klammern,
ohne Inhalt) als Platzhalter verwendet werden; hier wird dann bei der Abfrage der im Filterfeld
eingegeben Wert eingesetzt. Bei Verwendung von Bedingungsgruppen können auch mehrere
dieser clause-Elemente für einen Filter verwendet werden, nähere Erklärungen im Abschnitt
Bedingungsgruppen.

ifEmpty

Optional - Eine OQL-Klausel, die in die Datenbankabfrage eingefügt wird, wenn im Filter kein
Wert eingegeben wurde oder keine clause definiert wurde.

Eingabefelder für Datumswerte (type="date")

In "date"-Filtern können Datumswerte eingeben werden, die in der Suche verwendet werden
sollen. Ähnlich wie bei "decimal"-Filtern wird auch hier geprüft, ob die Eingabe, ausgehend von
einem definierten Eingabeformat, als ein korrekter Datumswert interpretiert werden kann.

Folgende XML-Attribute können speziell für "decimal"-Filter benutzt werden:

cols

Optional - Die bevorzugte Breite des Eingabefeldes, in Zeichen.

replace

Optional - Wenn "true" (der Standardwert), wird die Benutzereingabe im Eingabefeld (FIXME
wann?) ersetzt durch das angegebene Datum, aber formatiert mit dem Datumsformat wie es bei
format spezifiziert ist. Mit "false" wird die Benutzereingabe beibehalten exakt wie sie eingegeben
wurde.

format

Optional - Wenn angegeben wird hierdurch eine Standardformatierung definiert, in der
Datumswerte - zusätzlich zu allen sonstigen Formaten (FIXME erklären) - im Feld eingegeben
werden können. Ist replace aktiviert, wird die Benutzereingabe umformatiert, so dass sie dem
hier gegebenen Format entspricht.

26

#solstice_lesezeichen_bedingungsgruppen

folder.gif

quickLookup

FIXME

strictFormat

Ähnlich wie bei format wird hier Standardformatierung definiert, in der Datumswerte im Feld
eingegeben werden können. Wird allerdings strictFormat benutzt, wird nur diese Formatierung
unterstützt, kein anderes Format ist dann erlaubt. Ist replace aktiviert, wird die Benutzereingabe
umformatiert, so dass sie dem hier gegebenen Format entspricht.

Folgende XML-Kindelemente können speziell für "string"-Filter benutzt werden:

clause

Verpflichtend - Die OQL-Klausel, die in die Datenbankabfrage eingefügt wird, wenn in diesem
Filter ein Wert angegeben wird. Innerhalb dieser Klausel kann {} (zwei geschweifte Klammern,
ohne Inhalt) als Platzhalter verwendet werden; hier wird dann bei der Abfrage der im Filterfeld
eingegeben Wert eingesetzt. Bei Verwendung von Bedingungsgruppen können auch mehrere
dieser clause-Elemente für einen Filter verwendet werden, nähere Erklärungen im Abschnitt
Bedingungsgruppen.

ifEmpty

Optional - Eine OQL-Klausel, die in die Datenbankabfrage eingefügt wird, wenn im Filter kein
Wert eingegeben wurde oder keine clause definiert wurde.

format

FIXME (weitere, zusätzliche Eingabeformate definieren)

Checkboxen zur Ja/Nein/Egal-Auswahl

BoolFilterGUI when 'ifTrue' then do when 'ifFalse' then do when 'ifNull' then do

Ein Boolescher Filter erscheint als Checkbox.

Beispiel Checkbox-Filter:

<Query type="Text">
 <filter type="bool" title="nur männlich">
 <ifTrue>
 Geschlecht.Tid = "MAENNLICH"
 </ifTrue>
 <ifFalse>
 Geschlecht.Tid = "WEIBLICH" or Geschlecht.Tid = "NA"
 </ifFalse>
 <ifNull>
 Geschlecht = null
 </ifNull>
 </filter>
</Query>

Das Query-Tag enthält hier einen Filter, der auf Wunsch alle weiblichen (eigentlich: alle nicht-

27

#solstice_lesezeichen_bedingungsgruppen

männlichen) Personen herausfiltert.

Auswahlboxen zur Auswahl aus mehreren Optionen

MultipleChoiceFilterGUI
 when 'nullable' then -- deprecated, replaced by "nullChoice"
 when 'nullChoice' then
 when 'nullChoiceTitle' then
 when 'sort' then
 when 'preselectIdx' then
 when 'clause' then
 when 'choice' then
 when 'choiceScript' then
 when 'choiceQuery' then
 when 'setupScript' then

Ein Multiple-Choice-Filter erscheint in seinem Formular als Combo-Box.

Statische Multiple-Choice-Filter

Beispiel statischer MultipleChoice-Filter:

<Query type="text">
 <filter type="multipleChoice" title="Auswahl">
 <choice title="Alle"></choice>
 <choice title="Nur Rechnungen">Bot.Name = "Rechnung"</choice>
 <choice title="Nur Direktverkaeufe">Bot.Name = "Direktverkauf"</choice>
 </filter>
</Query>

Beispiel statischer MultipleChoice-Filter mit vordefinierter identischer WHERE-Klausel:

<Query type="text">
 <filter type="multipleChoice" title="Auswahl">
 <clause>Bot.Name="{}"</clause>
 <choice title="Alle"></choice>
 <choice title="Nur Rechnungen">Rechnung</choice>
 <choice title="Nur Direktverkaeufe">Direktverkauf</choice>
 </filter>
</Query>

Hier agiert {} in der clause als Platzhalter für einsetzbare Werte, die in choice-Tags angegeben sind.
Bei "Alle" (leeres Tag) erhält es eine Wildcard-Funktion.

28

Beispiel MultipleChoice-Filter mit SQL-Funktionen (hier Datumsberechnung):

<Query>
 <filter type="multipleChoice" title="$R{Geschrieben}">
 <choice title="$R{seitHeute}"><![CDATA[
 age(date_trunc("day", BuchungsDatum))<"1 days"
]]></choice>
 <choice title="$R{seitGestern}"><![CDATA[
 age(date_trunc("day", BuchungsDatum))<"2 days"
]]></choice>
 <choice title="$R{letzteWoche}"><![CDATA[
 age(date_trunc("day", BuchungsDatum))<"7 days"
]]></choice>
 <choice title="$R{letztenMonat}"><![CDATA[
 age(date_trunc("day", BuchungsDatum))<"30 days"
]]></choice>
 <choice title="$R{irgendwann}"/>
 </filter>
</Query>

Dynamische Multiple-Choice-Filter mit choiceQuery

Es ist auch möglich, dynamische Multiple-Choice-Filter mit Hilfe einer Query anzugeben.

Beispiel dynamischer MultipleChoice-Filter:

<Query>
 <!-- Liste enthaelt alle Filialen mit gesetzter Tid und zeigt in der Liste den
Kurznamen der Filiale an -->
 <filter type="multipleChoice" title="Filiale">
 <choiceQuery query="Filiale a WHERE Not Ldel And Not is_undefined(Tid)"
 format="Kurzname">
 Filiale.Kurzname = "{Kurzname}"
 </choiceQuery>
 </filter>
</Query>

Das Resultat der choiceQuery wird Wert für Wert als Filtereinträge im Formular angezeigt. Statt der
Angabe eines "choice-title" werden die Resultate mittels des "format"-Attributs formatiert und als
Auswahlwerte angezeigt.

Abhängigkeiten für dynamische Multiple-Choice-Filter mit choiceQuery

Multiple-Choice-Filter, die ihre Werte per choiceQuery ermitteln, können Abhängigkeiten zu
anderen Filtern definieren und aufgrund der darin gesetzten Werte ihre eigene Auswahl
modifizieren.

Die Abhängigkeiten werden mittels des Attributs dependsOn angegeben. Es können ein oder durch
Komma getrennt auch mehrere andere Filter über ihren Namen als Abhängigkeiten definiert
werden.

29

Ändert sich der Wert in einem Filter, von dem man abhängig ist, so werden die Werte automatisch
aktualisiert.

Per Attribut dependsOnQuery wird die Query angegeben, mit der die Werte ermittelt werden,
inklusive der aktuell gesetzen Werte in den Filtern, von denen man abhängig ist. In die
dependsOnQuery können die Werte aus den anderen Filtern über ihren Namen eingesetzt werden,
indem man den Namen des Filters in geschweifte Klammern {…} schreibt.

Das gleiche gilt für das Attribut dependsOnDefaultQuery, das zur Ermittlung des Default-Wertes
inklusive der aktuell gesetzen Werte in den Filtern dient.

Beispiele dynamischer MultipleChoice-Filter mit Abhängigkeiten:

<Table entity="Lagerplatz">
 <Query type="Text">
 <filter name="Halle" type="multipleChoice" title="$R{Halle}">
 <choiceQuery query="Halle bo WHERE Not Ldel ORDER BY Name">Regal.Halle.Id =
{Id}</choiceQuery>
 </filter>
 <filter type="multipleChoice" title="$R{Regal}" dependsOn="Halle">
 <choiceQuery query="Regal bo WHERE Not Ldel ORDER BY Nummer"
dependsOnQuery="Regal bo WHERE Not Ldel AND Halle.Id = {Halle} ORDER BY Nummer">Regal
= {Id}</choiceQuery>
 </filter>

<Query type="Text">
 <filter name="Maschine" type="multipleChoice" title="$R{Maschine}">
 <choiceQuery query="Maschine a where not Ldel order by Name">
 exists (within MaschinenPositionen p where p.Maschine.Id = {Id})
 </choiceQuery>
 </filter>
 <filter type="multipleChoice" title="$R{MaschinenFehlercode}" dependsOn="Maschine">
 <choiceQuery query="MaschinenFehlercode a where not Ldel
 and (Inaktiv = null or not Inaktiv)
 and MaschinenUnabhaengig
 order by Name"
 dependsOnQuery="MaschinenFehlercode a where not Ldel
 and (Inaktiv = null or not Inaktiv)
 and (exists (within Maschinen m where m.Id={Maschine})
 or MaschinenUnabhaengig)
 order by Name">
 MaschinenFehler = {Id}
 </choiceQuery>
 </filter>


Momentan wird für die gesetzten Werte in Multiple-Choice-Filtern, von denen man
abhängig ist, nur die Id und nicht das BO selbst eingesetzt. Dies wird sich noch
ändern.

30



Die Notation ist noch verläufig und kann sich nochmals ändern. Insbesondere
fehlt die Möglichkeit, für gesetzte NULL-Werte in anderen Filtern abweichende
Klauseln angeben zu können, was oftmals jedoch nötig ist. Oftmals hilft eine
Konstruktion, bei der man in der dependsOnQuery, die den Wert eines anderen
Filters benutzt, zusätzlich eine Klausel "or '{Maschine}' = 'NULL' hinzufügt.

Dynamische Multiple-Choice-Filter mit choiceScript

Beispiel dynamischer MultipleChoice-Filter mit Skript:

<Query>
 <!-- Liste soll nur Kunden zur Auswahl enthalten, von denen es auch eine Rechnung
gibt -->
 <filter type="multipleChoice" title="Kunde">
 <clause>Kunde.AbstraktePerson.Name1 = "{}"</clause>
 <choiceScript language="groovy">
def erg = new TreeSet()
_bol.queryBO("SELECT a.Kunde.AbstraktePerson.Name1 FROM Rechnung a WHERE NOT Ldel
ORDER BY Kunde.AbstraktePerson.Name1").each{
 erg.add(it)
}
return new ArrayList(erg)
 </choiceScript>
 </filter>
</Query>

Weiteres Beispiel dynamischer MultipleChoice-Filter mit Skript:

<Query>
 <!-- Liste enthaelt immer die letzten 10 Jahre -->
 <filter type="multipleChoice" title="Jahr">
 <clause>date_part("year",$IP{attrDatum})={}</clause>
 <choiceScript language="groovy">
def cal = Calendar.getInstance()
cal.setTime(new Date())
def year = cal.get(Calendar.YEAR)
def list = []
(0..9).each{ list.add(String.valueOf(year - it)) }
return list
 </choiceScript>
 </filter>
</Query>

Trenner

Bei Trennern handelt es sich um ein GUI-Element um verschiedene interaktive Filter optisch zu
gruppieren und voneinander abzugrenzen. Trenner dienen lediglich dem Layout und haben auf
die Abfrage keinen Einfluss.

31

Trenner werden mit dem seperator-XML-Element definiert und können wie ein Label (siehe Sektion
zu Formularen) konfiguriert werden. Die Standard-Konfiguration vergrößert die Schrift um 10%
und hinterlegt das Label mit einem grauen Farbverlauf.

Alle nach einem seperator-XML-Element definierten Filter werden optisch zusammengefasst; durch
einen Klick auf den Trenner können alle zugehörigen Filter-Komponenten dann nach Wunsch
zusammen aus- und eingeblendet werden.

<separator text="Artikeleigenschaften" icon="/20x20/Box.gif"/>
<filter...
...
<separator text="Verkauf2" collapsed="true"/>
<filter...
...
<separator prefSize="200c"
 text="Verkauf"
 fontSize="+10%"
 gradientStartColor="160 160 255"
 gradientStopPosition="SOUTH"/>

OQL-Klauseln


Hierbei handelt es sich um eine Funktionalität für fortgeschrittene Benutzer, die
über die internen Datenstrukturen der Objekte und die Möglichkeiten von OQL
Bescheid wissen.

Neben einfachen Suchbegriffen können in der Eingabezeile auch direkt OQL-Klauseln eingegeben
werden, welche dann in die letztendlich auf der Datenbank ausgeführte OQL-Abfrage integriert
werden.

Solche Suchanfragen werden mit [(einer offenen eckigen Klammer) eingeleitet.

Beispiele

Wo: In einem Lesezeichen für "Personen"
Fragestellung: Personen, die nach einem bestimmten Datum (und Uhrzeit) geboren sind

32

[Geburtsdatum >= "1999-12-24 08:00"

Wo: In einem Lesezeichen für "Kunden"
Fragestellung: Kunden, die im Land "Deutschland" residieren

[Land.Name = "Deutschland"

Wo: In einem Lesezeichen für "Kunden"
Fragestellung: Kunden, die in "Deutschland" oder "Luxemburg" residieren

[Land.Name = "Deutschland" OR Land.Name = "Luxemburg"

Alternativ

[Land.Name In List ("Deutschland", "Luxemburg")

Wo: Lesezeichen für "Länder"
Fragestellung: Dopplersuche nach Ländern mit gleichem Namen

[exists(Land b where not b.Ldel and b != a and b.Name = a.Name)

Wo: Lesezeichen für "Länder"
Fragestellung: Dopplersuche nach Ländern mit gleichem Namen, "Original" (was zuerst angelegt
wurde) nicht anzeigen

[exists(Land b where not b.Ldel and b != a and b.Name = a.Name AND b.Crea < a.Crea)

Volltextsuche auf zusätzliche Felder ausdehnen


Hierbei handelt es sich um eine Funktionalität für fortgeschrittene Benutzer, die
über die internen Datenstrukturen der Objekte Bescheid wissen.

Die Volltextsuche kann erweitert werden, so dass sie nicht nur die direkten Felder (Attribute) der
Objekte durchsucht, sondern auch Felder von weiteren Objekten, die wiederum direkt mit den
Objekten aus dem Lesezeichen verknüpft sind.

Hierzu muss in der XML-Definition des Lesezeichens das <Query>-Element erweitert werden. Mit
Hilfe des Elements <addProperty> kann ein weiteres, "indirektes" Attribut in die Suche einbezogen
werden.

33

Beispiel, das zusätzlich die Suche nach dem Namen des Objekttyps ermöglicht:

<Query type="Text">
 [...]
 <addProperty>Bot.Name</addProperty>
 [...]
</Query>

Fest eingestellte Filter

Manche Lesezeichen haben bereits vordefinierte, fest eingestellte Filterbedingungen die zusätzlich
zu allen manuell eingegebene Filterbedingungen immer greifen. Diese sind immer aktiv und
können nur durch Bearbeiten der XML-Definition des Lesezeichens deaktiviert werden.

Diese Filter werden definiert in <filter>-Kindelementen (ohne das Attribut type) des <Query>
-Elements. Ähnlich wie bei der Suche mit OQL-Klauseln werden auch hier zusätzliche OQL-
Schnipsel definiert, welche dann in die letztendlich auf der Datenbank ausgeführte OQL-Abfrage
integriert werden.

Beispiel: Zeige auf jeden Fall nur Einträge, die beim Öffnen des Lesezeichens nicht älter als einen Monat
sind:

<Query type="Text">
 [...]
 <filter>
 <![CDATA[age(Crea) < "1 month"]]> ①
 </filter>
 [...]
</Query>

① Weil im Filter ein Kleiner-Zeichen < vorkommt, steht er in einer CDATA-Sektion. Alternativ
könnte man auch <filter>age(Crea) < "1 month"</filter> schreiben. Dies ist lediglich
aufgrund der allgemeinen Erfordernisse von XML notwendig und hat nichts mit dieser
Filterdefinition speziell zu tun.

Diese Filterdefinition unterstützt nur ein einziges (optionales) XML-Attribut zur Konfiguration: Wie
bei anderen Filtern auch kann der Filter mit dem group-Attribut einer Bedingungsgruppe
zugeordnet werden.

Als Alternative (ebenfalls optional) können, wie z.B. bei den "string"-Filtern, stattdessen auch
mehrere clause-XML-Kindelemente benutzt werden, falls der Filter in unterschiedlichen
Bedingungsgruppen verwendet werden soll.



Falls eine eigene Query-Schablone verwendet wird, könnten statt eines solchen
Filters natürlich die entsprechenden OQL-Klauseln auch direkt in der Schablone
angegeben werden. Durch Benutzung des filter-Elements wird die Schablone
aber übersichtlicher gehalten und das Bearbeiten der Filterdefinition ist u.U. etwas
einfacher.

34

#solstice_lesezeichen_oql_klauseln
#solstice_lesezeichen_bedingungsgruppen
#solstice_lesezeichen_stringfilter
#solstice_lesezeichen_query_schablone

Eigene Query-Schablone


Hierbei handelt es sich um eine Funktionalität für fortgeschrittene Benutzer, die
über die internen Datenstrukturen der Objekte und die Möglichkeiten von MEX
und OQL Bescheid wissen.

Im Normalfall verwenden die Lesezeichen zum Abfragen der Objekte eine Standard-OQL-Query
der Form SELECT a FROM <Typ> WHERE <Constraints>.

Es ist jedoch auch möglich, komplexere Query-Formen zu definieren, z.B. um die erweiterten MEX-
Möglichkeiten von Subqueries zu nutzen und z.B. die Objekte von zwei verschiedenen Untertypen
mit leich veränderten Klauseln abzufragen.

Hierzu kann mit dem template-Kindelement eine eigene MEX-Query-Schablone definiert werden.

Beispiel: Von SubtypA nur Objekte mit Name "EinName" anzeigen aber von SubtypB nur solche bei denen in
der Beschreibung "entfernt" vorkommt

<Query type="Text">
 [...]
 <template>
 {=select} SubtypA {=where} {=constraints} AND Name = "EinName"
 {Union {=select} SubtypB {=where} {=constraints} AND Beschreibung ilike
"%entfernt%"
 </template>
 [...]
</Query>

Bedingungsgruppen ("constraint groups")

Lesezeichen (bzw. eigentlich generell die MyTISM-eigene Tabellenkomponente) bieten die
Möglichkeit, die durch Filter etc. definierten Bedingungen unterschiedlichen Bedingungsgruppen
zuzuordnen. Dies ist insb. bei Benutzung des "Union"- bzw. "UnionAll"-MEX-Konstrukts nützlich, bei
dem im Prinzip zwei oder gar mehr einzelne OQL-Queries zu einem gemeinsamen OQL-Query
zusammengefügt werden. Bedingungsgruppen ermöglichen hier, einzelne Bedingungen nur in
einem bzw. nur in einer Untermenge dieser Queries anzuwenden, in den anderen nicht.

Bedingungsgruppen werden einfach dadurch definiert, dass sie in einem Filter angegeben werden
und dann bei Bedarf automatisch angelegt.

35

Beispiel: Union-Query der - neben gemeinsamen Bedingungen ("{=constraints}") die in beiden Teilqueries
gelten - unterschiedliche Bedingungen ("{=constraintsForA}" bzw. "{=constraintsForB}") in den beiden
Teilqueries benutzt

<Query type="Text">
 [...]
 <template>
 {=select} SubtypA {=where} {=constraints} AND {=constraintsForA}
 {Union {=select} SubtypB {=where} {=constraints} AND {=constraintsForB}
 </template>
 [...]
</Query>

Die Zuordnung von Bedingungen, z.B. aus Filtern, zu einer Gruppe erfolgt mit dem group-Attribut,
das an entsprechenden Stellen angegeben wird.

Bei Filtern besteht die Möglichkeit, entweder den gesamten Filter selbst einer Bedingungsgruppe
zuzuordnen oder aber das Filterkriterium in unterschiedlicher Weise in verschiedenen
Bedingungsgruppen zu verwenden.

Um den ganzen Filter einer Gruppe zuzuordnen wird das group-Attribut im filter-Element direkt
angegeben.

Beispiel in dem die im Filter "Dokumentnummer" eingetragene Bedingung nur für die Bedingungsgruppe
"constraintsForA" benutzt wird

<Query type="Text">
 <filter type="string" title="Dokumentnummer" cols="30" group="ForA">
 <clause>Dokumentnummer = "{}"</clause>
 </filter>
</Query>

Wenn die vorher schon genannte Query-Schablone mit "Union" benutzt wird, wird der in diesem
Filter eingegeben Wert nur bei der Abfrage für Objekte vom SubtypA berücksichtigt, da nur diese
(Teil-)Abfrage die Bedingungsgruppe "constraintsForA" benutzt; die Abfrage für Objekte vom
SubtypB filtert nicht nach diesem Kriterium.

Es ist auch möglich, das Filterkriterium in mehreren Bedingungsgruppen und Abfragen zu
verwenden, aber z.B. in abgewandelter Weise. Hierzu müssen mehrere clause-Kindelemente
definiert werden; für jedes dieser clause-Kindelemente wird dann bestimmt, in welcher Gruppe es
verwendet werden soll.

36

#solstice_lesezeichen_filter

Beispiel in dem die im Filter "Dokumentnummer" eingetragene Bedingung für beide Bedingungsgruppen
benutzt wird

<Query type="Text">
 <filter type="string" title="Dokumentnummer" cols="30">
 <clause group="ForA">Dokumentnummer = "{}"</clause>
 <clause group="ForB">DokumentHeaderinfo.Nummer = "{}"</clause>
 </filter>
</Query>

Das obige Beispiel geht davon aus, dass die Dokumentnummer in SubtypA im Attribut
Dokumentnummer zu finden ist, für den SubtypB dagegen in dem Attribut Nummer eines aus dem
Dokument referenzierten DokumentHeaderinfo-Objekts. Bei der Suche nach passenden Objekten
müssen also die Abfragen leicht unterschiedlich formuliert werden; dies ist mit diesem Verfahren
möglich.

In der (Teil-)Abfrage für SubtypA in der Query-Schablone wird für diesen Filter die Klausel
Dokumentnummer = "{}" in die Bedingungsgruppe "constraintsForA" eingebaut; in der (Teil-)Abfrage
für SubtypB wird dagegen die Klausel DokumentHeaderinfo.Nummer = "{}" in der Bedingungsgruppe
"constraintsForB" benutzt.

Falls für eine in der Query-Schablone benutzte Gruppe kein entsprechender clause-Eintrag dieser
Gruppe zugeordnet wurde, wird für diese Gruppe auch keine Klausel in die Abfrage eingefügt. Die
Bedingungsgruppen können allerdings trotzdem immer in der Form "… AND
{=constraints<Gruppenname>}" in der Schablone verwendet werden; sollten für eine
Bedingungsgruppe keine Bedingungen definiert worden sein - weil kein Filter dieser Gruppe
zugeordnet wurde oder keiner der zugeordneten Filter vom Benutzer genutzt wurde - so wird
automatisch eine Dummy-Klausel "(1 = 1)" eingefügt, die in diesem Fall syntaktisch korrektes OQL
garantiert aber keine wirklichen Auswirkungen auf die Abfrage hat.

Massenänderungen / Skripting
Aus jeder Tabellenansicht (also Lesezeichen und Table-Popups bzw. Anzeigen in Formulare mit 1:n-
Beziehung) heraus kann man sehr einfach Massenänderungen durchführen, d.h. eine oder
mehrere Eigenschaften mehrerer BOs auf einmal ändern.

Hierfür markiert man in der Tabellenansicht die zu ändernden Datensätze (oops, sorry, Objekte)
und ruft mit der rechten Maustaste das Kontextmenü auf.

Man hat nun die Möglichkeit, die Änderung mit dem Formular oder per Skript durchzuführen. Gibt
man in einem oder mehreren Feldern des Formulars einen Wert bzw. Werte ein, werden diese
beim Speichern auf alle markierten Objekte angewendet. So werden z.B. auch bei hinzugefügten
und neu angelegten Objekten diese kopiert und an jedes markierte Objekt angehangen.

Beispiel: an mehrere Rechnungen soll ein Artikel als Rechnungsposten angehangen werden. Die
betroffenen Rechnungen werden markiert und mittels des Massenänderungsformulars wird der
besagte Artikel als Rechnungsposten angehangen. Nach abgeschlossener Massenänderung findet
sich dieser Rechnungsposten als jeweils eigener Datensatz (Objekt) an allen markierten
Rechnungen.

37

Mit dem Skript eröffnen sich per BeanShell-Programmierung weitaus grössere und komplexere
Möglichkeiten. Neben den BeanShell-Befehlen stehen noch Funktionen aus den automatisch
generierten Klassen zur Verfügung (zu finden in .PROJEKT/classes/de/PROJEKT/bo/).

Beispiel (um Projekteinträge an ein anderes Projekt zu hängen, aus der OAshi-Applikation
"OAshi.Venice")

// Bitte modifizieren Sie dieses vorgefertigte Script nach Ihren Wuenschen
// bo.Id = (Long) ;
// bo.Crea = (Datetime) ;
// bo.Lmod = (Datetime) ;
// bo.Ldel = (Boolean) ;
// bo.Bot = // (BOT) ;
// bo.addDateien((Datei));
// bo.removeDateien((Datei));
// bo.Tid = (String) ;
// bo.Mitarbeiter = // (Mitarbeiter) ;
// bo.Datum = (Datetime) ;
// bo.Dauer = (Integer) ;
// bo.Kunde = // (Kunde) ;
prjs = ctx.queryBO("select bo from de.m.bo.Projekt bo where bo.Kuerzel = \"tapla\"");
bo.Projekt = prjs.get(0);
// bo.Beschreibung = (String) ;
// bo.BemerkungIntern = (String) ;
// bo.Kostenstelle = // (Kostenstelle) ;
// bo.InRechnungStellen = (Boolean) ;

38



Wenn man Objekte in Relation bringt oder aus der Relation entfernt mittels
add/remove, so werden diese Änderungen "blind" geloggt. D.h. es wird nicht
vorher überprüft, ob das BO, was man in Relation bringen will, bereits Teil der
Relation ist, bzw. ob das BO, was man aus der Relation entfernen will, gar nicht
Teil der Relation ist.

Dies birgt zwei Probleme:

1. Die Historie / das Log des BO weist "falsche" Einträge auf und erweckt ggfs. den
Eindruck, dass der alte Zustand vor der Änderung ein anderer gewesen sei.
Man muss also genau hinschauen, ob der suggerierte Zustand vor der
Massenänderung wirklich so vorgelegen hatte, oder ob da effektiv "nichts"
hinzugefügt oder entfernt wurde.

2. Bei einem undo einer solchen Massenänderung wird ein falscher Zustand
hergestellt, der nicht dem Zustand vor der Massenänderung entspricht, da ggfs.
ein Objekt in Relation gebracht wird, das gar nicht entfernt worden war, da es
vorher gar nicht in Relation stand.

Das gleiche Problem besteht natürlich bei allen programmatisch vorgenommenen
add/remove Änderungen an BOs.

Eine Lösung des Problems kann momentan nicht ohne erhebliche Performance-
Einbußen wegen Unlazying programmiert werden, wird aber im Zuge des Projekts
berücksichtigt werden, in dem wir Castor durch ein neues, besseres, selbst
entwickeltes JDO-Data-Binding-Framework ersetzen werden.

"Transform Scripts" für die Abfrageresultate
Es ist mögliche Skripte zu definieren, die während des Ladens auf bestimmte oder alle
zurückgelieferten Resultate (Objekte) der Abfrage angewendet werden.

In diesen Skripten können dann z.B. virtuelle Attribute gesetzt werden, deren Wert dann wiederum
in Filtern benutzt werden kann. FIXME really?

Skripte werden mit transform-script-Kindelementen des Query-Elements definiert. Es können
beliebig viele dieser Skripte definiert werden.


Da das Skript für ggf. sehr viele oder gar alle Einträge ausgeführt wird, kann das
die Performance beeinträchtigen. Lange, aufwändige Berechnungen oder
Ähnliches sollten in solchen Skripten also keinesfalls durchgeführt werden.

Folgende Variablen sind in diesen Skripten vorbelegt:

bo

Das aktuell betrachtete Objekt aus der Ergebnismenge, für welches das Skript gerade ausgeführt
wird.

tag

39

Der sog. Tag, der für das aktuelle Resultat (Objekt) definiert wurde. Kann - nur? - mittels des
{Union @MeinTag …}-MEX-Query-Konstrukts definiert werden; alle Resultate, die dann von
diesem Teil des Queries zurückgeliefert werden, bekommen den nach @ genannten Tag
zugewiesen.

Beispiel in dem sich jedes Objekt im Hilfsattribut "Badge" merkt, aus welchem Union-Query es
zurückgeliefert wurde

<Query type="Text">
 [...]

 <template>
 only BO a where 'dummy'!='for Badge'
{Union @Eingeloest a.AusgezahltIn from Bonuskarte {=where} {=constraints}}
{Union @Angespart a.GeschaeftsVorfaelle from Bonuskarte {=where} {=constraints}}
 </template>

 <transform-script>
 bo.Badge = tag
 </transform-script>
 [...]
</Query>

Folgende XML-Attribute können für das transform-script-Element angegeben werden:

language

Optional - Welche Programmiersprache für das Skript genutzt werden soll; Standard und bisher
eigentlich einzig unterstützt wird groovy.

onTag

Optional - Für Resultate mit welchem Tag (s.o.) das Skript ausgeführt werden soll; Standard ist *
was das Skript für alle Resultate, unabhängig von einem evtl. gesetzten Tag ausführt.

Das Query-Element
Die meisten möglichen Angaben zur Konfiguration wurden bereits weiter oben beschrieben; hier
noch kurze Erklärungen zu den möglichen aber noch nicht erwähnten Optionen.

Folgende XML-Attribute können im Query-Element angegeben werden:

entity

FIXME ???

fieldWidth

Optional - Die bevorzugte Breite des Text-Suchfeldes in Zeichen.

40

minSearchLength

FIXME ???

projection

FIXME ???

showDeleted

Optional - Hier kann mit einem Boolean-Wert "true" oder "false" (der Standardwert) angegeben
werden, ob auch als gelöscht markierte Objekte im Lesezeichen angezeigt werden sollen oder
nicht.

showFtsPopup

Optional, obsolet - Definiert, dass im Suchfeld Suchvorschläge für die veraltete "Compass"-
Volltextsuche gezeigt werden sollen. Wird nicht mehr weiter unterstützt und fällt irgendwann
komplett weg.

type

Unterstützt werden zwei Formen von Queries:

• Text: Die Standardform FIXME Alternativ erreichbar indem, statt des Query-Elements das
TextQuery-Element genutzt wird.

• Free oder Raw: Hier kann bzw. muss direkt ein vollständiger OQL-Query eingegeben werden.
Alternativ erreichbar indem, statt des Query-Elements das FreeQuery-Element genutzt wird.

Folgende Kindelemente kann das Query-Element haben:

transform-script

Optional, kann mehrfach verwendet werden - Siehe Abschnitt über "Transform Scripts"

addProperty

Siehe Abschnitt über zusätzliche Felder für die Suche

filter

Siehe Abschnitt über Filter

template

Siehe Abschnitt über eigene Query-Schablone

separator

Siehe Abschnitt über Trenner

Abfrage von Entitäten die ein bestimmtes Interface implementieren

Ein spezieller Parameter, der etwas mehr Erklärung benötigt, ist withInterface (Optional).
Mit dieser Einstellung kann definiert werden, dass nur die Objekte gesucht werden, deren Typ ein
bestimmtes Schema-Interface (siehe Entwickler-Dokumentation) implementiert.

Beispiel

41

#solstice_lesezeichen_transform_scripts
#solstice_lesezeichen_zusaetzliche_felder
#solstice_lesezeichen_filter
#solstice_lesezeichen_query_schablone
#solstice_lesezeichen_trenner

Diverse Entitäten - Benutzer, MyTISMAdresse, Gruppe, … - können als Empfänger für
Benachrichtigungen benutzt werden. Deswegen implementieren sie alle das (Schema-)Interface
NotifiableI. Allerdings leiten diese Entitäten sich alle von anderen Basis-Entitäten ab.
Soll nun - z.B. in der Solstice-GUI - es möglich sein, Empfänger für Benachrichtigungen
auszuwählen, dann sollen in der Auswahlliste natürlich Objekte all dieser möglichen Typen
gemeinsam aufgelistet sein. Das kann mit folgender Definition erreicht werden:
<Table entity="CoreBO" columns="Bot | Id | .">
<Query type="Text" withInterface="NotifiableI"/>
</Table>
Das führt dazu, dass bei einer Abfrage alle Objekte vom Typ CoreBO (oder einer der Subtypen dieser
Entität) durchsucht werden, die das angegebene Interface NotifiableI implementieren - also genau
halt Benutzer, MyTISMAdresse, usw. Die passenden Objekte werden alle in einer gemeinsamen Liste
angezeigt.



CoreBO ist "der kleinste gemeinsame Nenner" aller relevanten Klassen, d.h. die
Basisklasse, der wirklich alle relevanten Objekt angehören. In das Suchergebnis
kommen aber dann nur diejenigen Objekte, deren Subklasse auch das Interface
implementiert.
Würde stattdessen z.B. Benannt eingetragen, würde das Suchergebnis nur Resultate
vom Typ Benutzer oder Gruppe umfassen (beides Untertypen von Benannt). Obwohl
auch MyTISMAdresse das Interface implementiert wären Resultate von diesem Typ
nicht im Ergebnis enthalten, da MyTISMAdresse kein Untertyp von Benannt ist.

Benutzung von GUI-Filtern bei Nutzung von withInterface

Da bei Benutzung von withInterface unterschiedliche Entitäten an der Abfrage beteiligt sind
gestaltet sich die Benutzung von GUI-Filtern ein bisschen aufwändiger als sonst.

Beispiel für Benutzung von GUI-Filtern für Standardabfragen

<Table entity="Benutzer" columns="Id | Name,ASC | Beschreibung">
 <Query type="Text">
 <filter name="Email" title="Email" type="string">
 <clause>a.(MyTISMAdresseEmail)Adressen.Email ilike '%{}%'</clause>
 </filter>
 </Query>
</Table>

Im obigen Beispiel werden Benutzer abgefragt; ein GUI-Filter "Email" ermöglicht die Suche nach
Benutzern mit bestimmten Email-Adressen.
Da nur eine Entität - Benutzer - beteiligt ist, benötigt der Filter nur eine einzige <clause>-Angabe, die
definiert, welche zusätzliche OQL-Bedingung in den Query eingebaut werden soll. Es ist bekannt,
wo die Information zu Email zu finden ist (vereinfacht gesagt im Attribut Benutzer.Adressen.Email)
und da die Objekte alle vom gleichen Typ sind ist diese Bedingung natürlich auch für alle Objekte
gültig.

Wenn die Einstellung withInterface benutzt wird sind aber plötzlich Objekte von mehreren
unterschiedlichen Typen beteiligt. Je nach Objekttyp kann sich die Information über die Email-

42

Adresse an einer ganz anderen Stelle befinden. Deswegen muss es jetzt möglich sein, je nach
Objekttyp eine andere <clause> anzugeben, die spezifisch für diesen Objekttyp definiert, wie die
Bedingung abgefragt werden soll.

Beispiel für Benutzung von GUI-Filtern mit withInterface

<Table entity="CoreBO" columns="Bot,ASC | Id,ASC | .">
 <Query type="Text" withInterface="NotifiableI">
 <filter name="Email" title="Email" type="string">
 <clause group="Benutzer">a_Benutzer.(MyTISMAdresseEmail)Adressen.Email ilike
'%{}%'</clause>
 <clause group="Person">EXISTS (WITHIN
StandardKontakt.KommunikationsMoeglichkeiten k WHERE NOT k.Ldel AND
k.KommunikationsMittel.Name = 'Email' AND k.Wert ilike '%{}%')</clause>
 <clause group="MyTISMAdresseEmail">Email ilike '%{}%'</clause>
 </filter>
 </Query>
</Table>

Im obigen Beispiel "sucht" der Filter die Information zur Email-Adresse, je nachdem ob das aktuell
betrachtete Objekt vom Typ Benutzer, vom Typ AbstraktePerson oder vom Typ MyTISMAdresseEmail ist
jeweils an einem anderen, für den jeweiligen Typ passenden "Ort".

• Für welchen Objekttyp die <clause>-Anweisung jeweils gedacht ist wird durch das group-XML
-Attribut angegeben; hier muss der genaue Name des Objekttyps eingetragen werden.
Technische Erklärung: Bei Benutzung von withInterface wird automatisch für jeden Typ eine
passende Bedingungsgruppe angelegt, die den Namen des Objekttyps erhält. Die OQL-
Bedingung wird durch diese Angabe der entsprechenden Bedingungsgruppe zugeordnet.

• Außer der Angabe des group-XML-Attributs ähnelt die <clause>-Anweisung für Benutzer sehr der
Anweisung für den Standardfall im ersten Beispiel. Der wichtige Unterschied ist jedoch, dass im
Standardfall der Standard-Bezeichner "a" benutzt wird. Im Fall von withInterface muss hier
aber jeweils stattdessen der passende Bezeichner "a_<Typname>" benutzt werden.

Flag excludeOtherInterfaces für GUI-Filter

Es kann sein, dass bei einer Filterdefinition nicht für alle Typen, die eigentlich das Interface
implementieren, eine <clause>-Anweisung angegeben wird. Das kann z.B. passieren, wenn später
ein neuer Untertyp definiert wird, aber vergessen wird, die Filterdefinition zu erweitern. Da nicht
automatisch bestimmt werden kann, in welcher Weise der Filter auf solche "nicht erwähnten"
Untertypen angewendet werden soll, wird als Standard angenommen, dass der Filter auf keines der
Objekte dieses Untertyps passt und Resultate von diesem Untertyp werden bei Benutzung des
Filters komplett ausgeblendet.

Falls aber gewünscht ist, dass solche Resultate trotzdem ins Suchergebnis aufgenommen werden
sollen sofern sie zu allen anderen ggf. angegebene Suchbegriffen oder Filtern passen, kann im der
<filter …-XML-Element das XML-Attribut excludeOtherInterfaces='false' angegeben werden.

FIXME Genauer beschreiben, Beispiele… - tl;dr: Normalerweise sollte die Standardeinstellung
<true> das sein, was man haben will.

43

#solstice_lesezeichen_bedingungsgruppen

Formulare
Formulare sind Eingabemasken, mit deren Hilfe BOs erstellt oder bearbeitet werden können. Sie
definieren welche (Eingabefelder für welche) Attribute angezeigt werden.

Eingabemöglichkeiten nach Datentypen
(FIXME Diese Sektion passt eigentlich nicht wirklich hier hin; sollte man später mal alles
sauber anordnen …)

Timespan (Zeitspanne)

FIXME Standardmässig wird für die Eingabe im Solstice jetzt der SimpleTimespanChooser
verwendet, der eine einfachere Eingabe als hier angegeben erlaubt.

Zeitspannen werden intern als Anzahl von Sekunden abgespeichert. Eingegeben werden können
jedoch intuitivere Werte wie z.B. eine Anzahl von Minuten, Stunden, Tage etc. Es gibt dafür grob
drei Gruppen von Formaten:

Altes Standardformat

Dieses Format wird verwendet wenn kein spezielles displayFormat angegeben ist.

Beispiele:

• 30s = Dreissig Sekunden

• 10m = Zehn Minuten

• 1d 2h = Ein Tag und zwei Stunden

• 3w = Drei Wochen

• 5y 3M = Fünf Jahre und drei Monate

Folgende Bezeichner können dabei verwendet werden:

Table 1. Eingabe Timespan

Bezeichner Name Entspricht

y Jahr (year) 365d

M Monat (month) 30d

w Woche (week) 7d

d Tag (day) 24h = 1440m = 86400s

h Stunde (hour) 60m = 3600s

m Minute (minute) 60s

s Sekunde (second) 1s

Achten Sie darauf, dass sie bei Benutzung mehrere Bezeichner immer mit den grössten anfangen.

44

Beispiele:

• Richtig: 1m 30s

• Falsch: 30s 1m

• Richtig: 1d 5h 20m

• Falsch: 1d 20m 5h

Achten Sie auch darauf, dass zwischen Zahl und Bezeichner keine Leerzeichen stehen dürfen und
dass der Bezeichner immer nach der Zahl kommen muss.

Beispiele:

• Richtig: 1m 30s

• Falsch: 1 m 30 s

• Falsch: m1 s30

• Falsch: 1 30s

• Falsch: 1x 30s

• Falsch: a1 30s

• Falsch: m 1 30s

Alle eingegebenen Zeitspannen werden automatisch in ein kanonisches, d.h. festgelegtes,
eineindeutiges Format umgewandelt.

Beispiele:

• 55s bleibt 55s

• 73s wird zu 1m 13s

• 30h wird zu 1d 6h

• 10d wird zu 1w 3d

• 200w wird zu 3y 10M 5d

• 70m 340s wird zu 1h 15m 40s

• 70M 340s wird zu 5y 9M 5d 5m 40s

• 13y 6M 45d wird zu 13y 7M 2w 1d

"Doppelpunkt"-Format(e)

Dieses Format wird verwendet wenn als displayFormat "HH:mm:ss" bzw. "HH:mm" angegeben ist.
Die Stundenanzahl hat dabei immer mindestens zwei Ziffern, bei Bedarf können aber auch mehr
dargestellt/verwendet werden.

Beispiele für "HH:mm:ss":

• 00:00:30 = Dreissig Sekunden

• 00:10:00 = Zehn Minuten

45

• 26:00:00 = Ein Tag und zwei Stunden

• 504:00:00 = Drei Wochen

• 45960:00:00 = Fünf Jahre und drei Monate

"Marker"-Format(e)

Bei diesen Formaten wird die Zeitspanne als nur eine Zahl dargestellt. Ein Marker-Buchstabe im
displayFormat gibt dabei an, in welche Einheit die Zeitspanne umgerechnet bzw. angezeigt wird.

Beispiele für Darstellung bzw. akzeptierte Eingaben für eine Zeitspanne von 455984 Sekunden mit
verschiedenen displayFormat-Alternativen:

• ###,##0.00s = 455,984.00

• #####0s = 455984

• ###,##0.00m = 7,599.73

• #####0m = 7600

• ###,##0.00h = 126.66

• #####0h = 127

• ###,##0.00d = 5.28

• #####0d = 5

Als Marker erlaubt sind, wie im Beispiel zu sehen, 's' für Sekunden, 'm' für Minuten, 'h' für Stunden,
'd' für Tage, 'w' für Wochen, 'M' für Monate (= 30 Tage) und 'y' für Jahre (= 365 Tage). Bei Aus- oder
Eingabe werden diese Marker-Buchstaben nicht angezeigt bzw. eingegeben.

Als Besonderheit gibt es noch den Marker '*'. Bei Verwendung dieses Markers wird (bei der
Ausgabe) automatisch die "beste" Einheit gewählt, d.h. diejenige, bei der eine Zahl >= 1.0
herauskommt. Als Spezialfall wird bei diesem Format der passende Marker-Buchstabe mit
ausgegeben, bzw. muss bei der Eingabe ebenfalls an die Zahl angehägt werden, damit die korrekte
Einheit gewählt werden kann.

Die Zeichen vor dem Marker-Buchstaben sind ein Pattern für java.text.DecimalFormat, welches für
die Formatierung der Zahl verwendet wird.

Diverses
• Messagebox erzeugen: ctx.showMessageDialog("bla")

• Sperren von Formularfeldern: dem jeweiligen Feld mit name="ich" einen Namen geben und im
Formular-Code dann: ich.setEditable(false);

• Der Parameter lazy wird in der Formular-Definition im Tab-Tag verwendet (Bsp.: <Tab
lazy="false" …) und gibt an, ob die Daten die im Formular hinter diesem Tab (Reiter) stecken,
direkt beim Öffnen des Formulars geladen werden sollen (lazy="false") oder erst wenn man
den Tab anklickt (lazy="true" - das ist die Standard-Einstellung).

• Farbliches Aussehen der Reiter wird im jeweiligen Benutzer (Formular, Parameter, ganz unten)

46

eingestellt. Diese "Defaults" kommen aus Projekt/gui/Client.nrx (nach "xpath" suchen)

47

Pivot-Modus (Beta) in MyTISM verwenden
Diese Anleitung erklärt, wie Sie in den Pivot-Modus wechseln und diesen in der MyTISM-
Anwendung für erweiterte Datenanalysen nutzen, welcher auf der JIDE Pivot Library (aktuell in
Version v3.7.13) basiert.

Verfügbarkeit und Vorbereitung
Die Pivot-Modus-Funktionalität ist systemweit verfügbar:

• Sie kann von jeder Tabelle aus aufgerufen werden, die Daten anzeigt.

• Dies schließt Tabellen in Formularen und Lesezeichen ein.

Bevor Sie in den Pivot-Modus wechseln, stellen Sie sicher, dass Ihre Basisdaten korrekt geladen und
gefiltert sind:

• Daten laden: Öffnen Sie das Lesezeichen oder Formular mit den spezifischen Daten, die Sie
analysieren möchten.

• Filter anwenden: Nutzen Sie die verfügbaren Filteroptionen (z.B. Zeiträume, Kategorien, etc.),
um die Datensätze einzugrenzen und nur die für Ihre Analyse relevanten anzuzeigen.

Pivot-Modus starten und beenden
Sie können den Pivot-Modus auf zwei Arten ein- und ausschalten:

• Tastenkombination: Drücken Sie Alt + P.


Falls die Tastenkombination beim Wechsel nicht sofort funktioniert, müssen Sie
möglicherweise zuerst auf ein beliebiges Feld in der Pivot-Ansicht klicken, um
sicherzustellen, dass die Ansicht den Fokus für die Tastatureingabe hat.

• Kontextmenü: Klicken Sie mit der rechten Maustaste auf einen beliebigen angezeigten
Datensatz in der Tabelle. Wählen Sie den Eintrag "Pivot-Modus an/aus (beta)" aus dem
Kontextmenü.

Datenanalyse in der Pivot-Ansicht
Sobald Sie sich im Pivot-Modus befinden, wird die Standardtabelle in die Pivot-Tabellenoberfläche
umgewandelt:

• Feldliste: Die verfügbaren Datenfelder für die Analyse werden angezeigt, typischerweise ganz
rechts auf dem Bildschirm.

• Analysebereiche (Zonen): Ziehen Sie Felder in diese Bereiche, um Ihre Analyse zu
strukturieren:

◦ Datenfelder (Werte): Dient zur Aggregation der numerischen Werte (z.B. Summen,
Durchschnitte, Zählungen).

48

◦ Zeilenfelder: Dient zur Definition der Zeilen und der hierarchischen Gruppierung der
resultierenden Tabelle.

◦ Spaltenfelder: Dient zur Definition der Spalten und der Kreuztabelle der resultierenden
Tabelle.

◦ Filterfelder: Dient zum Anwenden dynamischer Filter auf die gesamte Pivot-Tabelle.

Allgemeine Analyseschritte:

1. Wert definieren: Ziehen Sie das Feld, das den zu berechnenden oder zusammenzufassenden
Wert enthält (Ihre Kennzahl), in den Bereich Datenfelder.

2. Struktur definieren: Ziehen Sie die kategorialen oder zeitbasierten Felder, die Sie zur
Gruppierung verwenden möchten (Ihre Dimensionen), nacheinander in die Bereiche
Zeilenfelder und/oder Spaltenfelder, um die Struktur für Ihre Ausgabe festzulegen.

Interpretation der Ergebnisse
Die Pivot-Tabelle berechnet automatisch den aggregierten Wert für jede eindeutige Kombination
der Felder, die Sie zur Gruppierung verwendet haben.

• Fehlende Datenpunkte: Wenn eine spezifische Kombination von Gruppierungsfeldern (z.B. ein
bestimmter Produkttyp in einem bestimmten Monat) nicht in der endgültigen Tabelle erscheint,
deutet dies darauf hin, dass keine entsprechenden Daten für diese spezifische Gruppe in den
zugrunde liegenden Daten nach der anfänglichen Filterung existierten.

49

Schablonen
Wie in "Grundlagen" bereits beschrieben, dienen Schablonen dazu, neue BOs anzulegen. Eine
Schablone definiert, von welcher Klasse ein neues Objekt erzeugt werden soll und welches
Formular zur Darstellung und Bearbeitung benutzt werden soll. Möglicherweise werden auch
bereits bestimmte Werte in das neu zu erzeugende BO geschrieben.

Die meisten Attribute des Formulars sind aus den anderen Strukturelementen bekannt und/oder
selbsterklärend. Wichtige spezielle Attribute:

BOTyp

Von welcher Klasse soll ein Objekt erzeugt werden?

Formular

Welches Formular (passend zum BOTyp bitte) soll für die Bearbeitung des neuen
Objekts/Eintragen der Werte benutzt werden?

Parameter

Hier kann (per XML) ein Script definiert werden, über das z.B. Werte im neuen Objekt bereits
vorbelegt werden. Weitere Konfigurationsmöglichkeiten bzw. Angaben sind hier z.Zt. nicht
möglich.

Erzeugen des neuen Objektes

 vgl. de/ipcon/gui/solstice/Client.openNew()

Im Normalfall wird ein Objekt der angegebenen Klasse (BOTyp, s.o.) einfach durch Aufruf des
entsprechenden No-Argument-Konstruktors erzeugt. Will man aber selber z.B. direkt Werte des
neuen Objektes setzen, kann man die Objekterzeugung mittels Script selbst in die Hand nehmen.
Dazu gibt man als Parameter für das Formular ein entsprechendes BeanShell-Script an, welches die
gewünschten Aktionen durchführt. Das Script muss ein neu erstelltes Objekt der gewünschten
Klasse zurückliefern.

Das Beispiel zeigt den Inhalts des Parameter-Feldes einer Schablone für
MyTISMBenachrichtigungsAuftrag; wie man sieht können so auch andere Objekte direkt mit
erzeugt und konfiguriert werden:

50

<Schablone>
 <newInstance>
 ba = tx.include(new MyTISMBenachrichtigungsAuftrag());
 ba.setAbsender(ctx.getSession().getUser());
 bv = tx.include(new MyTISMBenachrichtigungsVorlage());
 bv.setIstEinweg(true);
 ba.setVorlage(bv);
 return ba;
 </newInstance>
</Schablone>

Folgende Variablen sind im Script immer verfügbar (vgl. s.o. und
de/ipcon/gui/BasicClient.initScript()); ggf. können aber auch noch weitere Variablen übergeben
worden sein:

ctx

Der verwendete ClientContextI. FIXME gibt es den wirklich immer?

ftx

Der verwendete FormContext.

tx

Die Transaction, die für die Erstellung des Objekts verwendet wird.

Die alte Methode der Definition von Default-Werten im Schema wird aus Kompatibilitätsgründen
zwar noch unterstützt, sollte aber nicht mehr verwendet werden.

51

Reports

Grundlagen
Mittels Reports können Sie aus MyTISM heraus Listen oder Dokumente in verschiedenen Formaten
(z.B. PDF) erzeugen. Reports nutzen die Daten von Objekten aus der MyTISM-Datenbank und stellen
diese gemäß dem definierten Vorlage-Layout dar.

Was ist ein Report überhaupt?

"Reporting" ist ein Begriff für das Erzeugen von strukturierten Dokumenten oder Listen aus Daten
einer Datenbank. Reports unterscheiden sich von einfachem Textfluss durch "Schaltpunkte" wie
Seitengrenzen, Spaltenenden oder Gruppenwechsel, die den Aufbau steuern.

Traditionelle Reports:

Früher basierten Reports auf einer Matrix aus Spalten (Felder) und Zeilen (Datensätze). Durch
Sortierung entstehen Gruppen.

• Beispiel: Eine Liste von Personen mit Spalten für Anrede, Familienname, Rufname etc.

• Gruppierung: Sortierung nach Anrede erzeugt Gruppen "Frau" und "Herr". Weitere Sortierung
nach Familienname innerhalb der Anrede erzeugt Untergruppen (z.B. alle Herren mit
Nachnamen "Müller").

Bänder und Gruppenwechsel:

Jede Gruppe kann Kopf- und Fußbänder erhalten, die um das Detailband (enthält die eigentlichen
Daten) herum angeordnet werden. Gruppenwechsel lösen das Drucken der entsprechenden Fuß-
und Kopfbänder aus.

• Beispiel: Ein Report mit Gruppierung nach Anrede. Jede Seite fasst maximal 3 Personen.

Report-Titel
 Seiten-Kopf "Seite 1"
 Gruppen-Kopf "Frau" // Kopfband der Gruppe "Frau"
 Details <1> // Detailband mit Daten der ersten Person
 Details ②
 Details ③
 Seiten-Fuß "Seite 1"
 Seiten-Kopf "Seite 2"
 Details ④
 Details ⑤
 Gruppen-Fuß "Frau" // Fußband der Gruppe "Frau"
 Gruppen-Kopf "Mann" // Kopfband der Gruppe "Mann"
 Details ⑥
 Seiten-Fuß "Seite 2"
 ...

52

Variationen:

• Gruppenwechsel mit Seitenwechsel verbinden: Jede neue Gruppe beginnt auf einer neuen
Seite.

• Kopfband auf jeder Seite drucken: Der Gruppenkopf wird bei jedem Seitenwechsel
wiederholt.

Komplexeres Beispiel:

• Daten: Schrauben mit Eigenschaften Material (M), Kopfart (K) und Durchmesser (D), sortiert
nach M, K, D.

• Gruppen: M und K

• Ausgabe: Der Report zeigt, wie Kopf- und Fußbänder bei Gruppenwechseln reagieren.

Report-Titel
 Seiten-Kopf "Seite 1"
 Gruppen-Kopf "Blech"
 Gruppen-Kopf "Flach"
 Details ①
 Details ②
 Gruppen-Fuß "Flach"
 Gruppen-Kopf "Rund"
 Details ③
 Seiten-Fuß "Seite 1"
 Seiten-Kopf "Seite 2"
 Details ④
 Gruppen-Fuß "Rund"
 ...

MyTISM-Ansatz:

MyTISM verfolgt einen eigenen Ansatz für Reports, der auf der objektorientierten Struktur basiert
und den direkten Zugriff auf Datenbankfelder und virtuelle Eigenschaften ermöglicht. Die Anker-
Definition legt die Struktur fest, komplexe SQL-Queries entfallen.

Reports für MyTISM werden in XML geschrieben und können mit jedem Texteditor bearbeitet
werden. Für eine bessere Übersicht und Vorschau empfiehlt sich jedoch ein grafischer Editor wie
iReport.

Erstellung eines neuen Reports
1. Erzeugen Sie ein neues Report-Objekt mittels der Schablone /Admins/MyTISM

(Vorgebaut)/Grundelemente/Report (Vorgebaut).

2. Vergeben Sie einen aussagekräftigen Namen und eine kurze Beschreibung.

3. Verwenden Sie den Knopf Tid vorschlagen, um einen Kurznamen/externen Schlüssel
automatisch zu generieren, oder vergeben Sie einen manuell.

53

https://sourceforge.net/projects/ireport/files/iReport%20%28classic%29/

4. Wählen Sie den BO-Typ. Dieser definiert, welche Objekte als Datengrundlage für den Report
dienen.
Beispiel: Für einen Report zur Erzeugung von Vertragsdokumenten wählen Sie Vertrag.

5. Geben Sie die Priorität an. Diese bestimmt die Position des Reports in Listen (z.B.
Kontextmenüs). Ein sinnvoller Wert hängt von anderen Reports für denselben BO-Typ ab
(Vorschlag: 100).

6. Auch für Unterklassen des BO-Typs nutzbar: Ermöglicht die Verwendung des Reports auch für
Objekte von Unterklassen des angegebenen BO-Typs.
Beispiel: Ein Report für Vertrag ist mit dieser Option auch für Mietvertrag verfügbar.

7. Ist eine Liste: Gibt an, ob der Report mehrere Objekte auflistet (z.B. Übersicht aller Verträge)
oder nur ein einzelnes Objekt darstellt (z.B. ein Vertragsdokument).

8. Ist eigenständig: Ermöglicht dem Report, die Datengrundlage selbstständig anhand einer
definierten Abfrage zu ermitteln. Andernfalls kann der Report nur auf eine Objektauswahl (z.B.
in einem Lesezeichen) angewendet werden.

9. Weisen Sie den Report bestimmten Gruppen zu. Nur Mitglieder dieser Gruppen können den
Report verwenden (Vorschlag: Admins und Benutzer).

10. Wählen Sie mögliche (Druck-)Ziele und das voreingestellte Standard-Druckziel. Dies legt das
Ausgabeformat des Reports fest (Vorschlag für Standard-Ziel: Vorschau).

11. Sprachen: Bestimmt, in welchen Sprachen der Report gerendert werden kann. Im Druckdialog
wird die Auswahl auf diese Sprachen beschränkt. Ohne Auswahl wird die Standardsprache des
Reports verwendet.

12. Speichern und schließen Sie das Report-Objekt.

13. Verschieben Sie den Report im Navigationsbaum in den Zielordner.

14. Öffnen Sie den Report erneut zur Bearbeitung.

15. Verwenden Sie den Knopf Dateiname vorschlagen, um einen Dateinamen zu generieren.

54

16. Wechseln Sie zum Reiter Anker-Definition.

17. Beispiel für die einfachste Version: <set entity="Vertrag"/> (ersetzen Sie "Vertrag" durch den
gewünschten internen Namen des BO-Typs). Genauere Informationen finden Sie im Abschnitt
zur Anker-Definition.

18. Speichern und schließen Sie den Report.

19. Exportieren Sie den Report mittels Struktursynchronisation in ein Verzeichnis.

20. Erstellen Sie die eigentliche Report-Layoutvorlage. Nutzen Sie dafür das externe Programm

55

iReport. Falls noch nicht vorhanden, laden Sie es herunter und installieren Sie es.



Verwenden Sie zum Bearbeiten der Reports ausschließlich iReport 2.0.5 (die
letzte Version, die eine Änderung der Kompatibilitätseinstellung erlaubt) und
wählen Sie unter Options → Compatibility… "JasperReports 2.0.0 - 2.0.1".
MyTISM nutzt eine angepasste Version der JasperReports-Bibliotheken, die
neuere Report-Formate noch nicht unterstützt.

21. Starten Sie iReport und öffnen Sie die durch die Struktursynchronisation erstellte Vorlage
(REPORTNAME.xml).


Die Struktursynchronisation erzeugt zwei Dateien: REPORTNAME.rpt.xml und
REPORTNAME.xml. Die zweite Datei ist die in iReport ladbare Report-Layout-
Definition.

22. Erstellen/bearbeiten Sie das Vorlage-Layout wie gewünscht.
Ein Report hat sinnvolle Voreinstellungen, die angepasst werden können:

◦ Seitenformat (vordefiniert oder benutzerdefiniert)

◦ Seitenausrichtung (Hoch- oder Querformat)

◦ Seitenränder

23. Speichern Sie die Report-Definition in iReport.

24. Importieren Sie den Report zurück in MyTISM mittels Struktursynchronisation und testen Sie
ihn.
Beispiel: Wählen Sie ein passendes Objekt (z.B. einen Vertrag) aus einem Lesezeichen und
wählen Sie im Kontextmenü drucken mit "Mein erster Report :-)". Lassen Sie das Fenster für
die Struktursynchronisation geöffnet, um bei Änderungen der Layout-Vorlage den Import
einfach erneut durchführen zu können.

56

https://drive.google.com/file/d/16sOZwVrY1FKQT6l5ul-E-byMPbGz1KvH/view?usp=sharing

(Eingabe-)Parameter für Reports
Parameter ermöglichen die Übergabe benutzerdefinierter, manuell eingegebener Werte an Reports.
Diese müssen in der Reportdefinition definiert und konfiguriert werden. Beim Ausführen des
Reports im Solstice-Client werden sie dann in einem Dialog abgefragt.

Beispiel:

[...]
<reportFont name="heading" isDefault="false" fontName="Arial" size="10" [...]/>
<parameter name="GruppierenNach" isForPrompting="true" class="java.lang.String">
 <property name="choiceScript"
 value="model.addEntry('$R{Produkt}');
 model.addEntry('$R{Saison}', 'Ich will einen anderen Titel in der
Box :-)');
 model.addEntry('$R{Kurzbezeichnung}');
 model.addEntry('$R{Lieferant}');"/>
 <property name="chooseOnly" value="true"/>
</parameter>
<parameter name="Stichtag" isForPrompting="true" class="java.util.Date">
 <property name="format" value="MEDIUM_"/>
</parameter>
<field name="THIS" class="java.lang.Object"/>
[...]

• format: Wird von fast allen Parametern unterstützt und enthält ein CBOFormat zur
Verarbeitung der Eingabewerte.

• choiceScript: Bei Angabe dieser Property wird eine Combobox mit den Werten aus dem Skript

57

#cboformat

angezeigt.
Weitere Konfiguration:

◦ chooseOnly (true/false): Nutzer kann nur vorgegebene Werte auswählen (true) oder eigene
eingeben (false).

◦ nullable (true/false): Kein Wert muss ausgewählt werden (true).

◦ Siehe JavaDoc der Klasse de.ipcon.form.FComboBox für weitere Informationen

• rawInputDefinition: Fortgeschrittene Benutzer können in Spezialfällen die Definition des
Eingabeelements direkt angeben. Dies erfordert Kenntnisse der MyTISM-Formular-XML-
Sprache und sorgfältiges Escapen von Sonderzeichen. Der Name der property muss dem Typ der
Report-Parameter-Klasse entsprechen (z.B. VString für java.lang.String, VBO für Subtypen von
BO).

Beispiel für ein Auswahl-Popup für einen Benutzer:

 <parameter name="EinBenutzer" isForPrompting="true"
class="de.ipcon.db.core.Benutzer">
 <property name="rawInputDefinition" value="<Popup
property="VBO"><Table><Query type="Text"
entity="Benutzer"><filter>NOT AnmeldungVerweigern OR
AnmeldungVerweigern = null</filter></Query><Columns>Name,
ASC|Beschreibung</Columns></Table></Popup>"/>
 </parameter>

Die Anker-Definition oder: Wie komme ich an die
Daten?
MyTISM verwendet einen eigenen Ansatz für den Reportgenerator, um unabhängig von
Datenbankänderungen zu sein und virtuelle Eigenschaften nutzen zu können. Das Kernstück ist die
Anker-Definition, die festlegt, an welchen Objekttypen ein Report verankert ist:

• Welche Entität haben die übergebenen Objekte? <set entity="…">

• Welche Relationen werden aufgefaltet (ähnlich zu Joins in SQL)? <many property="…" alias="…
">

• Wie wird sortiert? <sort ascending="true|false" byProperty="…">

Die Anker-Definition ist ein XML-Schnipsel und definiert die Entität (z.B. Rechnung) sowie das
Auffalten von Relationen mittels many-Tags:

58

Beispiel (Report für ein Objekt vom Typ "Rechnung" bei dem die Einträge der Relation "Posten" als Liste
ausgegeben werden sollen, aufsteigend (klein→groß) sortiert nach dem Attribut Posten.Position)

<set entity="Rechnung">
 <many property="Posten" alias="P">
 <sort ascending="true" byProperty="Position">
 </many>
</set>

FIXME TT 2025-04-28: Es gibt auch die Möglichkeit, die anzuzeigenden Objekte über eine separate
Query zu laden; Report muss dann Flag "Eigenstaendig" gesetzt haben; es existiert dann eine
Variable BOS mit den Query-Ergebnissen zur Verwendung im Report.

Dadurch werden automatisch Gruppen gebildet und die Daten sortiert. Alle n-1 Relationen und
deren Attribute sind direkt zugreifbar, ohne weitere Definition. Alias-Namen können zur
Vereinfachung verwendet werden:

Nummer
Adressat.StandardKontakt.Anschrift.Strasse
P.Artikel.Listenpreis
P.Einzelpreis
P.Gesamtpreis
P.Position

Komplexe Szenarien können mit eingebetteten OQL-Queries, Script-Schnipseln oder virtuellen
Properties abgebildet werden.

Um Eigenschaften in Ausdrücken innerhalb eines Reports zu verwenden, nutzen Sie Feld-
Klammern $F{}:

$F{P}.Position
$F{Nummer}

Weitere Klammern sind $P{} für Parameter und $V{} für Variablen. Ausdrücke können kombiniert
werden, z.B.:

"RG-Nr ${$F{Nummer}}"
"Seite ${$V{PAGE_NUMBER}}"
"${$F{Familienname}}, ${$F{Rufname}}"
L10n.formatDate(new Date(), "yyyy-MM-dd")

Für komplexe Formatierungen bietet sich das CBOFormat an.

virtualProperties in Reports

Definieren Sie virtuelle Eigenschaften wie folgt:

59

<set entity="StueckListe">
 <virtualProperty name="VorhandeneZusatzstoffeAlsString" entity="StueckListe">
 <get>de.ipcon.tools.TextTools.join(getVorhandeneZusatzstoffe().values())</get>
 </virtualProperty>
</set>

Folgende Variablen stehen zur Verfügung:

bo

Das Objekt, das im Report als "Basis" dient (im obigen Beispiel die "StueckListe", für die der
Report aufgerufen wurde).

FIXME TT 2025-04-28: Noch weitere Variablen?

 Achtung: Rufen Sie virtuelle Eigenschaften in textFieldExpressions ohne "get" auf:

Richtig:

<textFieldExpression
class="java.lang.String"><$F{THIS}.getVorhandeneZusatzstoffe().isEmpty() ? "-" :
$F{THIS}.VorhandeneZusatzstoffeAlsString</textFieldExpression>

Falsch:

<textFieldExpression
class="java.lang.String"><$F{THIS}.getVorhandeneZusatzstoffe().isEmpty() ? "-" :
$F{THIS}.getVorhandeneZusatzstoffeAlsString()</textFieldExpression>

Sonst erhalten Sie eine Fehlermeldung, dass die Methode nicht existiert.

Das CBOFormat und seine Verwendung im Report
Das CBOFormat ermöglicht eine elegante Verwendung von Objekteigenschaften innerhalb eines
Reports. Es muss in Form eines Feldes verpackt werden:

$F{Objektname}.describe("Eigenschaft1")
$F{Objektname}.describe("Eigenschaft1(', 'Eigenschaft2)")
$F{Objektname}.describe("Eigenschaft1' 'Eigenschaft2")

Für den Zugriff auf das "Haupt-BO" eines Reports wird automatisch ein Feld namens "THIS"
angelegt. Darüber können Sie per CBO-Format, GStrings oder Groovy-Auswertung auf Inhalte
zugreifen.

60

#cboformat

Beispiel für Zugriff über CBO-Format

<field name="THIS" class="java.lang.Object"/>
[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.describe("Familienname")</textFieldExpression>
[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.describe("Rufname")</textFieldExpression>
[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.describe("Titel")</textFieldExpression>
[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.describe("Geburtstag")</textFieldExpression>
[...]

Der Zugriff via Groovy-Notation ermöglicht den Aufruf von Gettern oder anderen Methoden, die
auch andere Werte als Strings zurückgeben können.

Beispiel für Zugriff via Groovy-Notation

<field name="THIS" class="java.lang.Object"/>
[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.familienname</textFieldExpression>
[...]
<textFieldExpression class="java.lang.String">$F{THIS}.rufname</textFieldExpression>
[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.titel?.name</textFieldExpression>
[...]
<textFieldExpression class="java.lang.String">$F{THIS}.getAlter(new
Date())</textFieldExpression>
[...]

Troubleshooting

Seitenwechsel / Überlappende Felder / "wachsende" Felder bei
dynamischem Text

• isStretchWithOverflow="true": Passt die Größe von Textfeldern an den Inhalt an.

• positionType="float": Verschiebt nachfolgende Felder automatisch nach unten.

• isSplitAllowed="true": Ermöglicht den Umbruch von Bändern bei wachsendem Inhalt.

• minHeightToStartNewPage: Beeinflusst den Band-Umbruch.

61

Codebausteine
Codebausteine dienen dazu, Teile des XML-Quelltextes zu verwalten, die von verschiedenen
Strukturelementen gemeinsam verwendet werden. Diese Codeteile können dann auf einfache
Weise in den Quelltext von Strukturelementen eingebunden werden, ohne dass der Code immer
wieder kopiert werden muss.

Einbinden von Codebausteinen

Codebausteine können einfach durch Einfügen eines Elementes
<Includename="codebausteinName/pfad"/> im Quelltext (Attribut "Parameter" bzw. zusätzlich
Attribute "AnkerDefinition" und "ReportDefinition" bei Reports) eines Strukturelementes
eingebunden werden. Dabei gibt das Attribut name den Namen (ggf. mit Pfad) an, unter dem der
Codebaustein im Navigationsbaum abgelegt ist.



Bitte beachten: Damit der Codebaustein richtig gefunden wird, müssen Sie sowohl
für den Codebaustein als auch für die Ordner im ggf. angegebenen Pfad den Wert
aus dem "Name"-Attribut des Codebausteins bzw. Ordners verwenden! Der im
Baum angezeigte Name ist der sog. "L10nName", der automatisch (soweit
verfügbar) in der für den Client angezeigten Sprache gehalten ist. Dieser
"L10nName" wird sich in vielen Fällen vom eigentlichen Namen des Elements in
"Name" unterscheiden!

Beispiel eines Codebausteins und seiner Einbindung in Formularen.

62

Codebaustein "Allgemein.elem", abgelegt im Ordner "/Admins/$R{MyTISM}/$R{Alarme}/$R{X}":

<Element>
 <Border etched="true" title="Allgemein">
 <View>
 <Element label="$R{Name}">
 <Text displayProperty="Name" columns="25"/>
 </Element>
 <!-- ...noch mehr Quelltext... -->
 </View>
 </Border>
</Element>

Formular "$R{_BOBasierterTermin} (Vorgebaut)":

 <Tab title="Allgemein" scrollable="true">
 <View>
 <!-- Einbindung von Codebausteinen: -->
 <Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Allgemein.elem"/>
 <Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Maske.elem"
parentClass="de.ipcon.db.core.BOBasierterTermin"/>
 <Element>
 <Border etched="true" title="Auslösung">
 <View>
 <Element label="$R{Attribut}">
 <Text displayProperty="Attribut" columns="25"/>
 </Element>
 ...

Formular "$R{_Hinweis} (Vorgebaut)":

 ...
 </View>
 </Tab>
 <Tab title="Allgemein" scrollable="true">
 <View>
 <!-- Einbindung von Codebausteinen: -->
 <Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Allgemein.elem"/>
 <Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Maske.elem"
parentClass="de.ipcon.db.core.Hinweis"/>
 <Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Sonstiges.elem"/>
 </View>
 </Tab>
 <Tab title="Auslösekriterien" scrollable="true">
 <View>
 <Element>
 ...

63

Reiter "CookedParameter", "CookedReportDefinition" sowie
"CookedAnkerDefinition" und "Codebausteine"

Die vorgebauten Formulare für Lesezeichen, Formulare, Schablonen und Reports beinhalten zwei
Reiter namens "CookedParameter" und "Codebausteine". Unter "CookedParameter" kann man sich
ansehen, wie der Quellcode des Strukturelements (aus dem Attribut "Parameter") letztendlich
aussieht, nachdem der Inhalt aller Codebausteine eingefügt und alle L10n-Einträgen durch den
entsprechenden sprachspezifischen Text ersetzt wurden. Bei Reports existieren außerdem noch die
"CookedReportDefinition" und die "CookedAnkerDefinition", die dasselbe für den Inhalt des
Attributs "ReportDefinition" bzw. "AnkerDefinition" anzeigen.

Unter "Codebausteine" kann man sehen, welche Codebausteine vom aktuellen Strukturelement
verwendet werden und diese direkt öffnen.

Pfadangaben für Codebausteine
Absolute Pfade mit "/" am Anfang (wie in obigen Beispielen) werden immer von der Wurzel des
Navigationsbaumes (genauer eigentlich: Der Struktur-Hierarchie) aus aufgelöst.

Relative Pfade mit ".", ".." oder direkt einem Namen am Anfang werden vom "Standort" des
aufrufenden Strukturelements aus aufgelöst. Dabei bezeichnet "." den aktuellen Standort (wird
wohl eher selten benötigt), ".." den Elter des aktuellen bzw. des vorher im Pfad genannten
Strukturelements. Normalerweise greift bei relativen Pfaden automatisch ein Fallback-
Mechanismus; dieser funktioniert indem der Codebaustein (mit dem gegebenen relativen Pfad)erst
vom Standort des aufrufenden Strukturelements, wenn er dort nicht gefundenwird von dessen
Elter aus, dann ggf. von dessen Elter, etc. gesucht wird. Durch Angabe von useFallback="false"
beim Include-Aufruf wird der Fallback-Mechanismus deaktiviert; in diesem Fall wird nur einmal,
ausgehend vom aufrufenden Strukturelement aus, gesucht.

Benamsung von Codebausteinen
Der Name des Codebausteins sollte einen Hinweis darauf geben, um was es sich bei dem Inhalt
handelt. Hierzu wird er mit einer Endung versehen. Oft verwendete Endungen sind: "button"::
Inhalt besteht aus einem "button"-Element, ggf. mit zugehöriger Action. "elements":: Inhalt besteht
aus mehreren, beliebigen XML-Elementen. "filter":: Inhalt definiert einen Filter für ein Lesezeichen.
"script":: Inhalt ist ein Skript. "tab":: Inhalt ist ein ganzer Reiter ("Tab") eines Formulars. "table"::
Inhalt ist eine Tabellendefinition. "view":: Inhalt ist ein "view"-Element für ein Formular.

Die Verwendung dieser (und ggf. weiterer Endungen) ist allerdings nur eine Konvention und zur
Nutzung von Codebausteinen nicht unbedingt notwendig.

Example 1. Namensbeispiele:

EinstellungenNavigationsbaum.tab
Benutzer.table

64

Inhalt von Codebausteinen
Codebausteine können einen beliebigen Inhalt haben, angefangen von einem kurzen oder längeren
normalem Text bis hin zu großen XML-Stücken.

Beispiele für mögliche Codebausteine:

text

text text text viel text
und noch mehr text
und noch weiterer text

dann ausserdem noch text

<element>text</element>

<element>
 <kindelement>text</kindelement>
</element>

<element attribut1="wert">
 <kindelement>text1</kindelement>
 <kindelement attribut="wert">text2</kindelement>
</element>

Zu beachten ist allerdings, dass es sich - aus technischen Gründen - bei dem Inhalt eines
Codebausteins (mehr oder weniger) um ein wohlgeformtes XML-Dokument handeln muss. Dies
bedeutet insb. dass es genau ein "Root"- bzw. "Wurzel"-Element geben muss; will man mehrere, in
der gleichen "Hierarchie-Stufe" befindliche (XML-)Elemente in einem Codebaustein abspeichern,
muss man in diesem Fall ein "künstliches"Wurzel-Element einfügen. Dieses trägt den Namen
Include und wird beim Einfügenin den Quellcode anderer Struktruelemente einfach entfernt (d.h.
es wird nur der Inhalt dieses Elements eingefügt.

Beispiel:

<element attribut1="wert"/>
<element>text</element>
<andereselement/>

65

muss geschrieben werden als:

<Include>
 <element attribut1="wert"/>
 <element>text</element>
 <andereselement/>
</Include>

Dieses künstliche "Include"-Element kann immer - also auch wenn sowieso eigentlich schon nur ein
Wurzel-Element existiert - angegeben werden.

Beispiel:

<element attribut1="wert">text</element>

kann auch geschrieben werden als:

<Include>
 <element attribut1="wert">text</element>
</Include>

hideComment beim Einbinden eines Codebausteines

Beim Einbinden von Codebausteinen werden vor dem Code des eigentlichen Codebausteines
standardmässig Kommentare eingesetzt, die Anfang und Ende des Codebausteines im Quelltext
kennzeichnen. Der Mechanismus, der diese Kommentare erzeugt, fügt zwischen den
Kommentartags und dem eigentlichen Inhalt des Codebausteines eine Anzahl von Leerzeichen ein.
Dieses Verhalten ist offensichtlich eine Eigenart der genutzten XML-Bibliothek. Für
Programmquelltext ist dieses Verhalten nicht weiter störend.
Wenn der Codebaustein jedoch z.B. für eine mehrzeilige Kundenadresse verwendet wird, so kann
es passieren, daß die Leerzeichen, die hinter dem Ende des Kommentares automatisch eingefügt
wurden, eine Verschiebung in der ersten Zeile der Adresse verursachen. Die erste Zeile, die in dem
Fall einen Namen enthielt und in einem Report verwendet wurde, war im generierten Report nach
rechts verschoben. Um diesen Effekt zu vermeiden läßt sich das Einfügen von Kommentaren beim
Einbinden des Codebausteines pro Verwendung individuell deaktivieren. Dafür existiert das
vordefinierte Argument hideComment. Es wird, analog zu den bereits beschriebenen Argumenten, als
Attribut im Include-Statement wie im folgenden Beispiel eingegeben.

<Include name="codebaustein" hideComment="true"/>

Einziger - bekannter - Nachteil dieses Argumentes: Die Referenzpunkte, die man in den Cooked-
Parameters etc. hat, um diesen Codebaustein zu finden - die XML-Kommentarzeilen - existieren
nicht mehr.

66

Argumente für Codebausteine

Teilweise kann es vorkommen, dass ein Stück Quellcode in verschiedenen Strukturelementen fast
gleich vorkommt, sich aber in einem oder mehreren kleinen Punkten unterscheidet:

Quellcode 1:

<element>
 Ein bisschen Text.
 <-- Fast gleich: -->
 <element attribut="eins"/>
 <-- Ende -->
 <weiteresElement/>
</element>

Quellcode 2:

<element>
 <einElement>inhalt</einElement>
 <nochEinElement/>
 <-- Fast gleich: -->
 <element attribut="zwei"/>
 <-- Ende -->
 <wiederumEinElement attr="wert"/>
</element>

Für diese Argumente kann man auch Standardwerte definieren (siehe u.a. obiger Screenshot), die
automatisch genommen werden, wenn beim "Aufruf" desCodebausteins kein Wert für das
Argument mit übergeben wurde. Dies ist insb. dann sinnvoll, wenn der Codebaustein oft verwendet
wird, der Wert aber in den meisten Fällen gleich ist und nur ein- oder wenige Male ein anderer
Wertbenötigt wird:

67

Quelltext eines Codebausteins der außerdem (über das Codebaustein-Formular) noch ein
CodebausteinArgument "attrWert" mit Standardwert "eins" definiert hat:

<element attribut="$IP{attrWert}"/>

Quellcode 1:

<element>
 Ein bisschen Text.
 <!-- War: <element attribut="eins"/> -->
 <Include name="codebaustein"/> <!-- attrWert="eins" braucht nicht angegeben zu
werden. -->
 <weiteresElement/>
</element>

Quellcode 2:

<element>
 <einElement>inhalt</einElement>
 <nochEinElement/>
 <!-- War: <element attribut="zwei"/> -->
 <Include name="codebaustein" attrWert="zwei"/>
 <wiederumEinElement attr="wert"/>
</element>

Core-Codebausteine

jahrMonatTag.filter

Dieser Codebausten gibt die Möglichkeit, Einträge bestimmter Tabellen nach einem bestimmten
Datumsattribut zu filtern.
Er erzeugt drei Drop-Downs: Eins für jeweils Jahr, Monat und Tag.

Der Filter richtet sich zunächst einmal nach den verfügbaren Einstellungen-Variablen, die gesetzt
sind (entweder global, speziell für eine Gruppe, oder den Benutzer selbst), um die drei Filter mit
Werten vorzubelegen.
Die Einstellungen-Variablen sind die folgenden:

• jahrMonatTagFilter.Jahr

• jahrMonatTagFilter.Monat

• jahrMonatTagFilter.Tag

Ist für ein Feld keine Einstellungen-Variable gesetzt, wird das Feld mit keinem konkreten Wert
vorbelegt, steht also auf "alle".

68

Um das Jahr via einer Einstellungen-Variable zu besetzen(also Systemweit, gruppen- oder
benutzerspezifisch), die aber nur für eine spezifische Tabelle gelten soll, kann man dem
Codebaustein den Parameter "parmPostfix" mitgeben.
Ist dann eine Einstellungen-Variable jahrMonatTagFilter.Jahr.<parmPostfix> gesetzt, hat diese nur
für Tabellen aus Strukturelementen, die dem Codebaustein den selben Postfix mitgeben,
auswirkungen.

Weitere optionale Parameter des Codebaustens:

• attrDatum 1.)

• parmJahrVon 2.)

• parmJahrBis 3.)

• JahrDefaultIsAll 4.)

1.) Der Name des Attributes, nach dessen Datum gefiltert werden soll. Default ist "Crea".
2.) + 3.) Das Start- und Endjahr, von denen ausgewählt werden darf.
Beispiele:

• ParmJahrVon="2000", ParmJahrBis="2019" → logischerweise alle Jahre von 2000 bis 2019

• ParmJahrVon="-10", ParmJahrBis="+10" → die letzten und nächsten 10 Jahre (im Jahr 2019:
2009-2029)

Die Default-Werte liegen hier bei: ParmJahrVon="2000" und ParmJahrBis="+0", also von 2000 bis zu
dem aktuellen Jahr.
4.) JahrDefaultIsAll: Ein Parameter, mit dem, unabhängig von Einstellungen-Variablen,
Strukturelemente dem Codebaustein vorgeben können, dass der "Jahr"-Filter mit "alle" vorbelegt
werden soll. Default ist "false".

Problembehebung

IllegalArgumentException: Invalid parameter "xyz" given…

Diese Fehlermeldung bedeutet, dass beim "Aufruf" eines Codebausteins ein Argument angegeben
wurde, das für diesen Codebaustein nicht definiert wurde. Wenn nicht wirklich einfach vergessen
wurde, das Codebaustein-Argument am Codebaustein zu definieren (s.o.) kann das auch passieren,
falls der Benutzer keine ausreichenden Rechte hat, Codebaustein-Argumente zu lesen. In diesem Fall
wird dann zwar der Codebaustein (für den Leserechte gesetzt sind) geladen, aber die eigentlich
dafür definierten Codebaustein-Argumente können nicht geladen werden (was aufgrund des
Designs des Rechtesystems aber nicht zu einer Fehlermeldung führen kann und soll) und deswegen
sieht es so aus, als wären für den Codebaustein keine Argumente vorhanden, was wiederum diesen
Fehler zur Folge hat.

69

Benachrichtigungen
Dokumentation zum Benachrichtigungssystem befindet sich im Admin-Handbuch.

70

Alarme

71

Grundlagen
Es ist möglich, in MyTISM sog. Alarme zu definieren, bei deren Auslösung die für den jeweiligen
Alarm eingetragenen Empfänger benachrichtigt oder andere Aktionen ausgeführt werden. Es gibt
vier Varianten von Alarmen, die für jeweils unterschiedliche Zwecke gedacht sind.

Einfacher Termin

Dies ist die einfachste Alarm-Variante; der Alarm wird einfach zu einem vorher eingetragenen,
festen Zeitpunkt ausgelöst.
Alternativ gibt es auch die Möglichkeit, den Alarm mit einer konfigurierbaren Frequenz
wiederholt auslösen zu lassen.

Beispiel: Am 22. Juli 2011 um 14:00 Uhr ist eine Projektbesprechung angesetzt. Alle
Projektteilnehmer sollen eine Viertelstunde vorher eine Benachrichtigung erhalten.

BO-basierter Termin

Diese Alarm-Variante ähnelt der Variante "Einfacher Termin" insofern, als dass die Alarme
ebenfalls zu einem festgelegten Zeitpunkt ausgelöst werden. Allerdings "überwacht" ein BO-
basierter Termin eine Menge von Objekten ("BOs") und legt für jedes dieser Objekte einen
eigenen Auslösezeitpunkt fest.

Beispiel: Für alle Mitarbeiter ist der jeweilige Geburtstag eingetragen. Die Mitarbeiter sollen
jedes Jahr eine automatische Gratulation erhalten (ob das wirklich so eine tolle Idee ist, sei
mal dahingestellt …).

Hinweise

Diese Alarm-Variante dient dazu, Alarme auszulösen, wenn bestimmte Ereignisse in der
MyTISM-Anwendung auftreten bzw. bestimmte Änderungen an Objekten erfolgen.

Beispiel: Der Chef der Buchhaltung möchte benachrichtigt werden, sobald der Bestand eines
Kontos unter 100,- EUR sinkt.

Wiedervorlagen

Diese Alarm-Variante dient dazu, Alarme auszulösen, wenn bestimmte Ereignisse in der
MyTISM-Anwendung nicht innerhalb einer festgelegten Zeit aufgetreten sind bzw. bestimmte
Änderungen an Objekten innerhalb einer festgelegten Zeit nicht erfolgt sind.

Beispiel: Der Projektleiter möchte benachrichtigt werden, wenn sich der Status eines
Projekts zwei Tage lang nicht geändert hat.

Gegenbenenfalls kann es in Ihrer MyTISM-Anwendung auch noch eigene Untervarianten dieser
Alarm-Typen geben, die für spezielle Zwecke gedacht sind. Diese besitzen ggf. zusätzlich zu den

72

normalen Eigenschaften der Alarme noch zusätzliche Eigenschaften und Funktionen. Ob solche
Untervarianten existieren, wofür sie benutzt werden und weitere Informationen hierzu kann
Ihnen Ihr MyTISM-Administrator geben.

73

#alarme_eigenschaften

Vorbereitung und Konfiguration

Alarmsystem-Lizenz einspielen
Das Alarmsystem ist eine optionale Erweiterung des Standard-MyTISM-Systems. Um es aktivieren
und nutzen zu können, müssen Sie zuerst eine gültige Alarmsystem-Lizenz erworben und auf dem
Server eingespielt haben.

Alarmsystem aktivieren
Das Alarmsystem ist normalerweise deaktiviert, d.h. Sie können zwar beliebige Alarme anlegen,
diese werden aber von MyTISM erst einmal in keiner Weise behandelt.

Um das Alarmsystem zu aktivieren müssen Sie in der Datei mytism.ini im Abschnitt [Alarme] die
Einstellung activateAlarme auf if_possible oder mandatory setzen. Sowohl if_possible als auch
mandatory starten das Alarmsystem; sie unterscheiden sich lediglich darin, dass bei mandatory eine
auffälligere Fehlermeldung ausgegeben wird (ursprünglich sollte der Serverstart abgebrochen
werden, was nach Diskussion dann aber deaktiviert wurde).

Sollte der entsprechende Abschnitt noch nicht existieren, fügen Sie ihn einfach ein.

[Alarme]
activateAlarme=if_possible

Wenn Ihre MyTISM-Installation mehrere synchronisierende Server umfasst, müssen - und dürfen -
Sie das Alarmsystem aus technischen Gründen nur auf dem autoritativen Server aktivieren. Wenn
Sie obigen Eintrag in der Datei mytism.ini eines nicht-autoritativen Servers eintragen, wird nur
eine Warnmeldung im Log ausgegeben und das Alarmsystem dort nicht aktiviert.

Sync-Events behandeln
Sollten Sie in der Datei mytism.ini im Abschnitt [Alarme] noch einen Eintrag handleSyncEvents=1
oder handleSyncEvents=0 aufgeführt haben, können Sie diese Zeile löschen, da sie zu einer
mittlerweile nicht mehr benötigten und nicht mehr unterstützten Konfigurationsmöglichkeit
gehört. Falls die Zeile vorhanden ist wird sie ignoriert.

Benachrichtigungssystem aktivieren
Sollen Empfänger beim Auslösen eines Alarms benachrichtigt werden muss das
Benachrichtigungssystem ebenfalls aktiviert und entsprechend konfiguriert sein. Wenn dies nicht
der Fall ist, können keine Benachrichtigungen (per e-Mail o.Ä) versandt werden und die
ausgelösten Alarme sind nur über das AlarmAusloesungen-Lesezeichen bzw. den entsprechenden
Reiter z.B. im Benutzerformular ersichtlich.

74

#benachrichtigungen

Anlegen und Verwalten von Alarmen
Alarme sind ganz normale Objekte und können mit den entsprechenden Schablonen, Lesezeichen
und Formularen angelegt und verwaltet werden. Die automatisch generierten Schablonen,
Lesezeichen und Formulare befinden sich im Ordner Admins → MyTISM → Alarme. Diese
Strukturelemente sind normalerweise nur für MyTISM-Administratoren verfügbar.

Evtl. existieren auf Ihrer speziellen MyTISM-Installation auch noch weitere, angepasste Formulare
und Lesezeichen oder Formulare und Lesezeichen für eigene Alarm-Untervarianten. Diese
befinden sich dann möglicherweise in anderen Ordnern; weitere Informationen hierzu kann Ihnen
Ihr MyTISM-Administrator geben.

Gruppe "Admins Alarmsystem"
Es gibt in MyTISM-Applikationen eine automatisch angelegte Gruppe "Admins Alarmsystem".
Benutzer, die dieser Gruppe zugewiesen wurden, haben automatisch alle Rechte um Alarme und
damit zusammenhängende Objekte zu erstellen und zu verwalten.

Außerdem steht ihnen im Gruppen-Ordner ein Lesezeichen "Alarme" zur Verfügung, mittels derer
sie die im System vorhandenen Alarme auflisten, öffnen, editieren und über das Kontext-Menü
neue Alarme anlegen können.

Alarme aktivieren und deaktivieren
Alle Alarme besitzen ein "Aktiv"-Flag. Ist dieses gesetzt, so ist der Alarm aktiviert und kann
ausgelöst werden. Ist das Flag nicht gesetzt - der Standard bei neuen Alarmen - so ist der Alarm
deaktiviert und löst nicht aus.

Sie können hiermit einen Alarm quasi "vorbereiten", in dem Sie alle benötigten Daten des Alarms
eintragen, aber das "Aktiv"-Flag noch nicht setzen. Der Alarm ist dann bereits im System bekannt,
wird aber noch nicht behandelt. Sie können in diesem Fall das "Aktiv"-Flag zu einem späteren
Zeitpunkt setzen und den Alarm speichern; der Alarm wird dann ab diesem Zeitpunkt behandelt.



Für BO-basierte Termine und Wiedervorlagen erfolgt die Initialisierung der
WiedervorlageStatus bzw. BOBasierterTerminStatus in jedem Fall beim ersten
Speichern des Alarms, da diese Informationen zum Funktionieren dieser Alarme
essentiell sind und immer benötigt werden.

Die Aktivierung von neu angelegten (und auf "Aktiv" gesetzten) Hinweisen und EinfachenTerminen
geschieht sehr schnell, die Aktivierung von BO-basierten Terminen und Wiedervorlagen kann aus
technischen Gründen, je nach der Anzahl der zu "überwachenden" Objekte, etwas Zeit in Anspruch
nehmen (siehe Wiedervorlagestatus).

Testmodus für Alarme

75

#wiedervorlagestatus
#bobasierterterminstatus
#wiedervorlagestatus


Der Testmodus für Alarme ist noch in Arbeit; ggf. ändert sich das Verhalten in
diesem Bereich in Zukunft noch.

Alle Alarme können in einem Testmodus betrieben werden; hierzu muss das entsprechende
"Testmodus"-Flag gesetzt werden. Ist dieses gesetzt, so löst der Alarm keine Benachrichtigungen aus
und erzeugt auch keine AlarmAuslösungen-Objekte.

Es werden lediglich entsprechende Info-Meldungen im Log ausgegeben, mittels derer verfolgt
werden kann, was bei der Auslösung passiert wäre.



Sonstige bei der Auslösung normalerweise erfolgende Dinge passieren jedoch
weiterhin: So werden z.B. einfache Termine auch gelöscht, wenn sie im Testmodus
"ausgelöst" wurden, etc. Für BO-basierte Termine und Wiedervorlagen erfolgt die
Aktualisierung der WiedervorlageStatus bzw. BO-basierter TerminStatus (siehe
alarme_alarmAusloesungen) in jedem Fall weiterhin, da diese Informationen zum
Funktionieren dieser Alarme essentiell sind und immer benötigt werden.

76

#alarme_benachrichtigungen
#alarme_alarmAusloesungen
#alarme_alarmAusloesungen

Gemeinsame Eigenschaften aller Alarme
Alle Alarme haben bestimmte Eigenschaften gemeinsam:

Erster Reiter
Name

Pflichtfeld - Der Name oder Titel eines Alarms sollte den Alarm kurz und prägnant benennen.
Der Name kann frei gewählt werden und kann z.B. bei der Anzeige der Alarme im zugehörigen
Lesezeichen oder bei den Benachrichtigungen bei der Alarm-Auslösung benutzt werden. Es ist
sehr sinnvoll, jedoch keineswegs zwingend, dass unterschiedliche Alarme unterschiedliche
Namen haben :-)

Beschreibung

Optional - Die Beschreibung kann einen längeren Kommentar bzw. eine längere Beschreibung
des Alarms beinhalten. Dieser Text kann z.B. bei den Benachrichtigungen benutzt werden.

Empfänger "Sende Benachrichtigungen an … diese(n) Empfänger (CC) … (und) diese(n)
Empfänger (BCC)"

Mindestens eines von "Empfänger (CC)", "Empfänger (BCC)" oder "Benachrichtigungsskript" muss
gegeben sein - Wie bereits erwähnt können Empfänger definiert werden, die bei der Auslösung
eines Alarms benachrichtigt werden sollen.
Alle "Empfänger (CC)" sind bei der Benachrichtigung für alle anderen Empfänger einsehbar;
Benachrichtigungen für "Empfänger (BCC)" werden dagegen einzeln versendet, so dass kein
Empfänger über die anderen Bescheid weiß.
Ein Empfänger, z.B. ein Benutzer, erhält für eine Alarm-Auslösung immer nur eine
Benachrichtigung, auch wenn z.B. für einen Alarm mehrere Gruppen als Empfänger eingetragen
wurden und der Benutzer Mitglied in mehreren dieser Gruppen ist oder der Benutzer selbst
ebenfalls für den Alarm eingetragen wurde.

Benachrichtigungsvorlage "Erstelle die Benachrichtigung mit …"

Pflichtfeld - Die BenachrichtigungsVorlage wird beim Versand von Benachrichtigungen
verwendet und gibt die Texte für Betreff und Nachrichtentext vor sowie ermöglicht die
Definition von Inline-Bildern, die in HTML-formatierten Email via cid: mit der angegebenen
Content-Id in URLs referenziert werden können. Es handelt sich hierbei zwar um ein
eigenständiges Objekt, dessen Daten können jedoch direkt im Alarm-Formular bearbeitet
werden.

"Alte Alarme nur auslösen wenn nicht älter als", Reiter "Erweitert"

Optional - Es kann passieren, dass Alarme zu einem bestimmten Zeitpunkt hätten ausgelöst
werden sollen, dies jedoch nicht passiert ist, z.B. weil zu dieser Zeit das Alarmsystem deaktiviert
war. Die entsprechenden Auslösungen werden dann normalerweise später (also z.B. sobald das
Alarmsystem wieder aktiviert wird) "nachgeholt".
Wenn Sie möchten, dass dabei nur Alarme ausgelöst werden, bei denen der eigentliche
Auslösezeitpunkt nicht zu weit in der Vergangenheit liegt, können Sie hier angeben, wie weit die
eigentliche Auslösung maximal zurück liegen darf.

77

#benachrichtigungen_empfaenger

Benachrichtigungsskript "Sende Benachrichtigungen mittels dieses Skripts", Reiter
"Erweitert"

Mindestens eines von Benutzer, Gruppe oder Benachrichtigungsskript muss gegeben sein - Diese
Eigenschaft dient dazu, bei der Auslösung von Alarmen eigene Aktionen ausführen zu können
und wird nur benötigt, wenn die Standardmöglichkeiten zur Benachrichtigung von Benutzern
bzw. Gruppen einmal nicht ausreichen. Ausführlichere Informationen hierzu finden Sie im
Abschnitt Benachrichtigungsskript.

Reiter "Erweitert"
"Verantwortlicher"

Optional - Hier kann ein Benutzer angegeben werden, der in irgendeiner Weise "verantwortlich"
für diesen Alarm ist. Wird der Alarm aufgrund von zu vielen Fehlern deaktiviert, wird diesem
Benutzer eine Benachrichtigung als Information geschickt; ebenso wird z.B. bei Fehlern im
Auslöseskript eine Benachrichtigung an den Verantwortlichen geschickt. Außerdem wird der
Wert dazu verwendet bei Benachrichtigungen bei Alarmauslösung den "Absender" dieser
Benachrichtigung zu setzen, falls nicht explizit ein abweichender Absender am Alarm gesetzt
wurde.
Wenn hier nichts angegeben ist und auch kein Absender gesetzt ist, wird als Absender der
interne Benutzer des Alarmsystems benutzt. Bei Benachrichtigungen, die per e-Mail verschickt
werden, wird die erste e-Mail-Adresse dieses Benutzers als Absender der Mails gesetzt (wenn
mehrere Adressen für den Benutzer verfügbar sind, ist nicht definiert, welche davon "die erste"
ist).

"Bei Ausfall benachrichtigen"

Optional - Hier kann eine Gruppe angegeben werden, die bei Fehlern am Alarm, zusätzlich zum
Verantwortlichen, benachrichtigt wird.

"Überwachung starten ab"

Optional - Normalerweise werden Alarme sofort aktiv, sobald sie erstellt und als "Alarm ist
aktiv" definiert wurden. Falls Sie hier ein Datum und ggf. eine Zeit eintragen wird der Alarm erst
zu diesem Zeitpunkt aktiv und wird nicht vor diesem Zeitpunkt ausgelöst.

"Will verschlüsselte Benachrichtigungen" und "Will signierte Benachrichtigungen"

Optional - Alarme können die Standardeinstellungen des Systems für verschlüsselte und/oder
signierte Benachrichtigungen gezielt überschreiben. Eingestellte Werte hier übersteuern die
Standardeinstellungen aber werden wiederum selbst von ggf. vorhandenen Einstellungen der
Benutzer übersteuert.

"Hänge statt dem auslösenden Objekt an die Benachrichtigungen an …"

Wird unter Anhängen von (weiteren) Objekten genauer erklärt.

78

#alarme_benachrichtigungsscript
#benachrichtigungen_vorbereitung_openpgp
#benachrichtigungen_vorbereitung_openpgp
#benutzer_vorbereitung_openpgp
#benutzer_vorbereitung_openpgp
#alarme_objekte_anhaengen

Einfacher Termin
Wie oben bereits erwähnt, handelt es sich bei einfachen Terminen um Alarme, die, ohne dass
weitere Bedingungen erfüllt sein müssen, einfach zu einem festgelegten Zeitpunkt ausgelöst
werden.

Beispiel: Am 22. Juli 2011 um 14:00 Uhr ist eine Projektbesprechung angesetzt. Alle
Projektteilnehmer sollen eine Viertelstunde vorher eine Benachrichtigung erhalten.

Allgemeine Eigenschaften festlegen
Geben Sie dem einfachen Termin einen kurzen aber aussagekräftigen Namen, und ggf. wenn
sinnvoll eine längere Beschreibung.

"Alte Alarme nur auslösen wenn nicht älter als" und "Verantwortlicher" können Sie, bei Bedarf, auf
dem Reiter "Erweitert" angeben.

Wann soll der einfache Termin stattfinden?
Einfache Termine können entweder einmalig, zu einem fest eingetragenen Zeitpunkt, oder
wiederholt, mit einer konfigurierbaren Frequenz, ausgelöst weden.

79

An einem festen Zeitpunkt

Geben Sie bei "Alarm auslösen" → "… am/um" das Datum und die Zeit an, wann der einfache
Termin stattfindet bzw. beginnt.
Der Alarm löst zu diesem Zeitpunkt einmal aus und wird danach automatisch gelöscht.

Wiederholt

Geben Sie bei "Alarm auslösen" → "… (oder stattdessen) wiederholen nach Muster" die Definition
an, die festlegt, mit welcher Frequenz der Termin auslösen soll.
Der Alarm löst immer wieder aus, zu Zeitpunkten die anhand der angegebenen Definition
bestimmt werden. Hilfe zur Definition (im sog. "Cron-Format") finden Sie z.B. unter
http://www.nncron.ru/help/EN/working/cron-format.htm

Vorwarnzeit

Normalerweise wird der einfache Termin erst zum angegebenen bzw. ermittelten Zeitpunkt
ausgelöst und eventuelle Benachrichtigungen werden also auch erst dann versendet.

Wenn die Auslösung bereits statt finden soll, bevor der einfache Termin eigentlich "startet", können
Sie unter "… aber sende Benachrichtigungen … früher (Vorwarnzeit)" optional eine Zeitspanne
angeben, um wieviel früher dem angegebenen bzw. ermittelten Zeitpunkt dies erfolgen soll.

Wer soll Benachrichtigungen erhalten und wie sollen
diese aussehen?
Siehe auch Benachrichtigung bei Alarm-Auslösung, Standard-Mechanismus

Geben Sie bei "Sende Benachrichtigungen an … diese(n) Benutzer … (und) diese Gruppe(n)" ein
oder mehrere Benutzer und/oder Gruppen an, der oder die bei der Auslösung des einfachen
Termins benachrichtigt werden soll(en).

Ein Benutzer erhält für eine Alarm-Auslösung immer nur eine Benachrichtigung, auch wenn z.B.
für einen Alarm mehrere Gruppen eingetragen wurden und der Benutzer Mitglied in mehreren
dieser Gruppen ist oder der Benutzer selbst ebenfalls für den Alarm eingetragen wurde.

Bei "Erstelle die Benachrichtigung mit …" wählen Sie eine Textvorlage aus, mittels derer der Betreff
und der Text der zu versendenden Benachrichtigungen festgelegt werden. Alternativ können Sie
mittels des Schreibstift-Icons auch eine neue, eigene Vorlage direkt erstellen.



Wenn der Text für die Benachrichtigung (von Leerzeichen abgesehen) mit <html>
beginnt, werden die daraus generierten e-Mails als HTML-Mails verschickt. Wenn
der Text nicht auf diese Weise beginnt werden die e-Mails als ganz normale
Textmails verschickt.

80

http://www.nncron.ru/help/EN/working/cron-format.htm
#alarme_standardbenachrichtigungen

Alice, die Projektleiterin, möchte Bob und Claire, die beiden anderen Projektmitarbeiter, am
22. Juli um 14:00 Uhr zu einer Besprechung einladen.

Sie erstellt also einen neuen EinfachenTermin mit Namen "Projektbesprechung". Unter "Alarm
auslösen … am/um" trägt sie "22.07.2011 14:00" ein.

Damit jeder auch noch Zeit hat, seine Sachen zusammenzusuchen und von seinem Büro in den
Besprechungsraum am anderen Ende des Gebäudes zu gelangen, setzt sie eine "… aber sende
Benachrichtigungen … früher (Vorwarnzeit)" von 15 Minuten (d.h. sie trägt "15m" ein), so dass
die Benachrichtigungen um 13:45 Uhr bei den Teilnehmern ankommen.

Zu benachrichtigende Benutzer sind natürlich Bob und Claire und sie trägt sich selbst
ebenfalls nochmal für eine Erinnerung ein (da sie leider notorisch vergesslich ist :-).

Als Benachrichtigungsvorlage wählt sie die bereits in der Datenbank vorhandenen Vorlage
"Projektbesprechung".

Nachdem sie den EinfachenTermin gespeichert hat, wird dieser von der MyTISM-Anwendung
in eine interne Liste eingetragen. Am 22. Juli um 13:45 Uhr werden dann automatisch
entsprechende Benachrichtigungen an Alice, Bob und Claire verschickt und der einfache
Termin wird automatisch gelöscht.

81

BO-basierter Termin
BO-basierte Termine werden einer Menge von Objekten zugeordnet, von denen entweder jedes
einen eigenen, festen Auslösungszeitpunkt bereits selbst definiert oder für welche der BO-basierte
Termin jeweils einen eigenen, festen Auslösezeitpunkt berechnet.

Beispiel: Für alle Mitarbeiter ist der jeweilige Geburtstag eingetragen. Die Mitarbeiter sollen
jedes Jahr eine automatische Gratulation erhalten (ob das wirklich so eine tolle Idee ist, sei mal
dahingestellt …).

Allgemeine Eigenschaften festlegen
Geben Sie dem BO-basierten Termin einen kurzen aber aussagekräftigen Namen, und ggf. wenn
sinnvoll eine längere Beschreibung.

"Alte Alarme nur auslösen wenn nicht älter als" und "Verantwortlicher" können Sie, bei Bedarf, auf
dem Reiter "Erweitert" angeben.

Welche Objekte sollen "überwacht" werden?
Legen Sie fest, für welche Objekte der BO-basierte Termin auslösen soll. Dazu muss dem BO-
basierten Termin unter "Überwache die Objekte …" eine sog. BOMaske zugewiesen werden, die die
Menge der zu "beobachtenden" Objekte definiert.

Sie können hier entweder eine bereits vorhandene BOMaske auswählen oder alternativ mittels des
Schreibstift-Icons auch eine neue, eigene Maske direkt erstellen. Für die meisten
Anwendungszwecke ist es ausreichend, unter "… vom Typ" einfach einen Objekt-Typ (Entität)
auszuwählen, womit dann alle Objekte dieses gewählten Typs vom BO-basierten Termin
"beobachtet" werden.

Die Erstellung von BOMasken wird im Abschnitt "BOMasken" im Kapitel "Rechteverwaltung" im
Administrator-Handbuch ausführlich erklärt, für weitere Informationen sehen Sie bitte dort nach.
Anzumerken ist hier noch, dass die Eigenschaft Attribut von BOMaske nur für die Rechteverwaltung
notwendig ist und für das Alarmsystem nicht benutzt wird; evtl. hier eingetragene Werte werden
vom Alarmsystem einfach ignoriert.

Exkurs: Vor- und Nachteile der verschiedenen BOMasken-Typen



tl;dr: In den meisten Fällen sind OQLBOMasken für BO-basierte Termine und
Wiedervorlagen die richtige Wahl.
Für Hinweise scheint nach aktuellem Stand die OQLBOMaske ebenfalls die beste Wahl
zu sein.
Immer: Falls wirklich ein Skript in der Maske benutzt werden muss, sollte dieses
möglichst schnell und mit möglichst wenig Aufwand auszuführen sein.

82

#oqlbomasken

Die wenigsten Alarme wollen einfach alle Objekte eines bestimmten Typs überwachen. Daher ist es
normalerweise notwendig, zusätzliche Kriterien, denen die Objekte genügen müssen, zu
definieren.

Bei normalen BOMasken ist das aber nur mit Benutzung eines Skripts möglich.
Aus diesem Grund ist es normalerweise vorteilhaft für BO-basierte Termine und Wiedervorlagen
einen der anderen verfügbaren BOMasken-Typen einzusetzen, da das die Leistung des Systems
deutlich beeinflussen kann.
Insb. die Dauer der Berechnung der WiedervorlageStatus bzw. BOBasierterTerminStatus kann
hiermit teils sehr verringert werden.

Bei der Initialisierung oder Neuberechnung der WiedervorlageStatus bzw.
BOBasierterTerminStatus müssen oft sehr viele Objekte mit den Kriterien der Maske geprüft
werden. Die speziellen BOMasken-Typen GrooqlBOMaske und insb. OQLBOMaske erlauben, diese
Prüfungen effizienter durchzuführen und insbesondere auch bereits bei der Abfrage der zu
prüfenden Objekte aus der Datenbank diese zu filtern und die Menge damit möglichst klein zu
halten.

Bei der Initialisierung bzw. Neuberechnung dieser Statuswerte müssen im Normalfall alle
möglicherweise passenden Objekte aus der Datenbank geladen und dann mit der definierten
Maske überprüft werden. Je nach Menge der Objekte und der Komplexität der Prüfung kann das
teils sehr lange dauern.

Mit Benutzung des richtigen BOMaske-Typs können aber sowohl das Abfragen und Laden aus der
Datenbank als auch die nachfolgende Überprüfung der Objekte zum Teil deutlich optimiert
werden.

Skript


Generell gilt für alle Alarmtypen: Wenn eine BOMaske ein Skript nutzt, ist das auf
jeden Fall eher kostenintensiv, selbst wenn es sich um ein sehr einfaches Skript
handelt z.B. nur ein !Ldel.



Aufwändigere Skripte, in denen z.B. Many-Relationen des BOs für die Prüfung
heran gezogen werden (was oft eine Datenbankabfrage erfordert), können die
Systemleistung dann noch mal sehr deutlich verschlechtern und sollten möglichst
vermieden werden.

Falls Skripte mehrere Bedingungen prüfen, sollten die schnell und mit wenig Aufwand
abzuprüfenden Bedingungen auf jeden Fall am Anfang geprüft werden und falls eine davon bereits
nicht zutrifft, sollte das Skript bereits verlassen werden. Erst danach sollten weitere Prüfungen, von
den "günstigsten" hin zu den "teuersten", erfolgen.

83

#wiedervorlagestatus
#bobasierterterminstatus
#wiedervorlagestatus
#bobasierterterminstatus

Beispiel, wie die Prüfungen durchgeführt werden sollten

// Ldel ist nur ein Boolean-Flag, sehr günstig zu prüfen:
if (bo.Ldel) {
 return false
}
// String-Vergleich, schon etwas "teurer" aber noch nicht allzu aufwändig:
if (bo.Name == null || bo.Name != 'Gewünschter Name') {
 return false
}
// Many-Relationen abzufragen ist sehr teuer, da die Objekte jedesmal erst geladen
werden müssen:
def hatBevorzugtesMitglied = bo.Mitglieder.find{ it.istBevorzugt }
if (!hatBevorzugtesMitglied) {
 return false
}
return true

Grooql-BOMasken

Grooql-BOMasken erlauben, neben dem oben genannten Skript noch ein GrooqlScript anzugeben.

Die Bedingungen, die dieses GrooqlScript definiert, können bereits bei der Abfrage der Objekte aus
der Datenbank berücksichtigt werden. Damit wird die Menge der "nachträglich" mit der Maske zu
prüfenden Objekte bereits im Vorfeld möglichst klein gehalten. Viele Objekte, die nicht zur Maske
passen, werden dann erst gar nicht zur Prüfung geladen.

Die Objekte, die dennoch aus der Datenbank geladen werden, werden dann in einem ersten Schritt
noch einmal mit dem definierten GrooqlScript geprüft.
Falls diese Prüfung positiv ausfällt (das GrooqlScript liefert true zurück) wird das Objekt danach -
wie bei einer normalen BOMaske auch - dann nochmal mit einem evtl. definierten Skript geprüft.
Dieses muss auch true zurückgeben, damit das Objekt dann vom Alarm berücksichtigt wird.


Weitere Informationen zu Grooql finden sich im entsprechenden Handbuch-
Kapitel.

OQL-BOMasken

OQL-BOMasken erlauben, neben dem oben genannten Skript noch ein oder mehrere WhereClauses
(OQL-WHERE-Klauseln) anzugeben.

Diese OQL-Klauseln werden direkt bei der Abfrage der Objekte aus der Datenbank berücksichtigt.
Damit wird die Menge der "nachträglich" mit der Maske zu prüfenden Objekte bereits im Vorfeld
möglichst klein gehalten. Viele Objekte, die nicht zur Maske passen, werden dann erst gar nicht zur
Prüfung geladen.

Nur die Objekte, die dennoch aus der Datenbank geladen werden, werden dann mit einem evtl.
definierten Skript geprüft.
Oft mag es aber möglich sein, bereits alle gewünschten Kriterien als WhereClauses zu definieren, so

84

#grooql
#grooql

dass gar kein Skript angegeben werden muss und die nachträgliche Prüfung mit Skript ganz
weggelassen werden kann.

Wann soll der BO-basierte Termin (für ein Objekt)
ausgelöst werden?
Es gibt zwei Möglichkeiten, zu bestimmen, wann der BO-basierte Termin für ein bestimmtes Objekt
ausgelöst wird: Durch Angabe eines Attributes, das einfach ausgelesen werden soll, oder durch ein
Skript, welches ausgewertet wird und für jedes Objekt das Auslösedatum berechnet.

Auslösedatum aus Objekt-Attribut auslesen

Unter "… das Datum aus Attribut" können Sie den Namen eines Attributes der Objekte auswählen,
aus dem der Auslösezeitpunkt gelesen werden soll.

Es werden nur Attribute angezeigt, die einen Datumswert beinhalten, also im Schema mit Typ
Datetime (oder einem davon abgeleiteten Typ) definiert sind.

Wenn möglich sollten Sie diese Variante der Variante mit Skript (s.u.) vorziehen, da sie

1. weniger Schreibarbeit und keine Kenntnisse in Skriptprogrammierung erfordert

2. die Anforderungen an das System geringer sind und

3. direkt bei der Definition des Alarms überprüft werden kann, ob alle Angaben korrekt sind - bei
einem Skript kann das normalerweise erst festgestellt werden, wenn zur Laufzeit bei der
Auswertung des Skripts ein Fehler auftritt.



Das Auslösedatum wird nur zu bestimmten Zeitpunkten (Erstellung des Alarms,
Start der Überwachung für ein Objekt, Änderung des Auslösedatum-Attributs oder
-Skripts) berechnet. Falls ein nicht-persistentes Attribut zur Ermittlung des
Auslösedatums für überwachte Objekte benutzt wird, kann es - je nachdem wie
das virtuelle Attribut seinen Wert bestimmt - sein, dass sich der Wert anderweitig,
z.B. zeitabhängig, ändert. In solchen Fällen kann diese Änderung vom Alarm nicht
registriert werden und es wird weiter das bestehende Auslösedatum für das
Objekt benutzt!

Auslösedatum mit Skript berechnen

Falls das einfache Auslesen eines Attributwertes für Ihre Zwecke nicht ausreicht, können Sie
alternativ unter "… das Datum, das dieses Skript liefert, erreicht ist" ein Skript angeben, welches
das Datum für die Auslösung berechnet. Damit das entsprechende Eingabefeld angezeigt wird, darf
in der Auswahlbox kein Attribut angewählt sein (Eintrag "(kein Attribut, benutze Skript)" muss
ausgewählt sein).


Es existiert noch ein Bug, der sporadisch auftritt, so dass "… das Datum, das dieses
Skript liefert, erreicht ist" nicht angezeigt wird und die Eingabe eines Scripts nicht
möglich ist.

85

Das so definierte Skript führt der BO-basierte Termin dann für jedes seiner zu überwachenden
Objekte aus. Dieses Skript muss dann einen Wert vom Typ java.util.Date zurückliefern, welcher
angibt, wann der Alarm für das entsprechende Objekt ausgelöst werden soll.

Wie das Skript diesen Zeitpunkt bestimmt, ist im Prinzip vollkommen egal; es könnte z.B.
theoretisch ebenfalls einfach nur den Wert eines Attributes des Objektes auslesen und diesen
zurückgeben (wobei dann die Benutzung eines Skripts natürlich nicht wirklich Sinn macht) oder
aber auch beliebig komplizierte Berechnungen ausführen, um das Auslösedatum für das aktuelle
Objekt zu errechnen.

Skript zur Berechnung des nächsten Geburtstages:

kal = Calendar.getInstance()
kal.setTime(bo.getGeburtstag()) // Auf Geburtstag initialisieren.
kal.set(Calendar.HOUR_OF_DAY, 10) // Auslösen um 10 Uhr morgens.
now = new Date()
while (kal.getTime().before(now)) { // Nächsten Termin finden.
 kal.roll(Calendar.YEAR, true) }
return kal.getTime() // Als Date() zurückgeben.

Zu beachten ist, dass das Skript möglichst schnell ein Ergebnis zurückliefern sollte, um das
Alarmsystem nicht unnötig zu verlangsamen.

Außerdem muss das Skript in jedem Fall ein Objekt vom Typ java.util.Date zurückliefern - also
nicht etwa gar keinen Wert oder einen Wert von einem anderen Typ! Sollte das passieren, oder
sollte irgendein Fehler im Skript auftreten, wird für das entsprechende Objekt kein Alarm
ausgelöst.



Das Auslösedatum wird nur zu bestimmten Zeitpunkten (Erstellung des Alarms,
Start der Überwachung für ein Objekt, Änderung des Auslösedatum-Attributs oder
-Skripts) berechnet. Falls ein Skript zur Ermittlung des Auslösedatums für
überwachte Objekte benutzt wird, kann es - je nachdem wie das Skript seinen
Wert bestimmt - sein, dass sich der Wert anderweitig, z.B. zeitabhängig, ändert. In
solchen Fällen kann diese Änderung vom Alarm nicht registriert werden und es
wird weiter das bestehende Auslösedatum für das Objekt benutzt!

Im Skript stehen folgende vordefinierte Variablen zur Verfügung:

bo

Das Objekt, für welches der Auslösezeitpunkt bestimmt werden soll.

bbt

Der BO-basierte Termin, zu dem das Skript gehört.

log

Ein Logger-Objekt (Name "de.ipcon.db.core.BOBasierterTermin") mit dem Debug- und andere
Meldungen ins Server-Log ausgegeben werden können.

Wie auch bei EinfachenTerminen kann auch bei BO-basierten Terminen Außerdem noch unter "…

86

aber sende Benachrichtigungen … früher (Vorwarnzeit)" eine Vorwarnzeit angegeben werden, die
die entsprechende Alarmauslösung dann noch früher stattfinden lässt.

Wer soll Benachrichtigungen erhalten und wie sollen
diese aussehen?
Die Konfiguration für die Benachrichtigungen funktioniert hier genauso wie bereits für einfache
Termine beschrieben.

Automatische Neuterminierung nach Auslösung
Normalerweise wird, analog zu den EinfachenTerminen, auch bei den BO-basierten Terminen für
jedes überwachte Objekt nur ein einziges Mal ein Alarm ausgelöst. In gewissen Fällen kann es aber
sinnvoll bzw. möglich sein, dass für ein Objekt der Alarm mehrfach zu verschiedenen Zeitpunkten
ausgelöst werden kann und soll.

Durch Setzen von "Alarm bleibt auch nach Auslösung weiterhin aktiv" (auf dem Reiter "Erweitert")
kann bestimmt werden, dass nach der Auslösung des Alarms für ein Objekt das Skript erneut
aufgerufen bzw. das angegebene Attribut des Objekts erneut ausgelesen wird um sofort einen
neuen Auslösezeitpunkt festzulegen, an dem dann der Alarm für dieses Objekt erneut ausgelöst
werden soll.

Hierbei ist allerdings zu beachten, dass der Alarm für dieses Objekt nur dann wieder neu
eingeplant wird, wenn hierbei dann ein Datum zurückliefert wird, welches in der Zukunft d.h. nach
dem aktuellen Auslösezeitpunkt liegt. Ansonsten könnte es zu Problemen kommen, da der Alarm
dann ohne Unterbrechung direkt hintereinander immer wieder ausgelöst würde.

Sollte das neue Datum ungültig sein (in der Vergangenheit liegen), so wird der Alarm für das
aktuelle Objekt nicht mehr neu terminiert und in Zukunft nicht mehr ausgelöst.

Wenn Sie die Variante mit Attribut verwenden, macht diese Funktion normalerweise keinen Sinn,
da ja immer nur ein Datum (welches dann nach der Auslösung garantiert in der Vergangenheit
liegt) zurückgeliefert wird. Eine Ausnahme wäre, falls es sich um ein virtuelles Attribut handelt, da
diese ja normalerweise ebenfalls berechnete Werte zurückliefern. Dies ist jedoch eher ein Thema
für Fortgeschrittene und wird deshalb hier nicht weiter behandelt.

87

#alarme_benachrichtigungen_para
#alarme_benachrichtigungen_para

Anhängen von (weiteren) Objekten
Normalerweise wird an die Benachrichtigungen von Alarmen das Objekt, aufgrund welcher der
Alarm ausgelöst wurde, angehängt. Es ist jedoch auch möglich, nicht das Objekt selbst, sondern ein
von diesem Objekt referenziertes anderes Objekt oder gar beliebige Objekte stattdessen
anzuhängen.

Im Feld "… das Objekt aus Attribut" können Sie ein Attribut des eigentlichen Objekts wählen, dessen
Wert statt dem auslösenden Objekt angehängt werden soll. Es werden nur Relationen-Attribute
angezeigt, d.h. keine Attribute die nur einfache Zahlen oder Zeichenketten, etc. als Werte
beinhalten.

Wenn Sie mehrere oder andere Objekte anhängen möchten, wählen Sie hier "(kein Attribut,
benutze Skript)" und können dann im darunter angezeigten Feld ein Skript eingeben, welches die
anzuhängenden Objekte zusammenstellt und als eine Sammlung vom Java-Typ Map zurückliefert.

Skript das mehrere Werte an Benachrichtigungen anhängt:

// FIXME Vermutlich kürzere Alternative:
// ['Objekt selbst':bo, 'Mitarbeiter':bo.getMitarbeiter(), 'Personeneintrag des
Mitarbeiters':bo.getMitarbeiter().getPerson()] as Map
map = new HashMap()
map.put("Objekt selbst", bo)
map.put("Mitarbeiter", bo.getMitarbeiter())
map.put("Personeneintrag des Mitarbeiters", bo.getMitarbeiter().getPerson())
return map

88


Wenn Sie ein Attribut auswählen, oder ein Skript angeben, wird das eigentliche
auslösende Objekt nicht mehr angehängt.

Wenn Sie an eine Benachrichtigung gar keine Objekte anhängen wollen, dann benutzen Sie ein
Skript, welches null oder eine leere Map zurückgibt.

Gar nichts anhängen:

return null

Es stehen folgende vordefinierte Variablen zur Verfügung:

alarm

Der Alarm, der ausgelöst wurde.

dateNow

Das Datum und die Zeit (als java.util.Date-Objekt) wann der Alarm ausgelöst wurde.

log

Ein Logger-Objekt (Name "de.ipcon.db.alarm.AlarmNotificationManager") mit dem Debug- und
andere Meldungen ins Server-Log ausgegeben werden können.
Für BO-basierte Termine, Hinweise und Wiedervorlagen, die sich ja immer auf BOs beziehen,
stehen noch zwei zusätzliche Variablen zur Verfügung:

bo

Das Objekt (BO), welches erstellt/geändert/gelöscht wurde (kann null sein).

bot

Der BOT des BOs, für welches der Alarm ausgelöst wurde (kann evtl. null sein).

Für Hinweise, die ja immer durch ein Ereignis ausgelöst werden, ist schlussendlich noch eine
Variable definiert:

bt

Die BT, welche den Alarm ausgelöst hat.

BOBasierterTermin-Status
Wenn ein neuer BOBasierterTermin angelegt wird, legt MyTISM automatisch für alle überwachten
Objekte sogenannte BOBasierterTermin-Status an, welche Daten beinhalten, die für die korrekte
Überwachung und Auslösung des Alarms für die Objekte benötigt werden.

Je nach Anzahl der zu überwachenden Objekte, kann das Anlegen der Status einige Zeit in
Anspruch nehmen. Der BOBasierteTermin wird erst dann aktiv, wenn alle benötigten Status
angelegt wurden.

89

Hinweise
Hinweise sind dazu gedacht, eine Menge von Objekten zu überwachen und Benachrichtigungen zu
versenden, wenn an einem oder mehreren dieser Objekte bestimmte Änderungen durchgeführt,
bzw. solche Objekte erzeugt oder gelöscht wurden.

Beispiel: Der Chef der Buchhaltung möchte benachrichtigt werden, sobald der Bestand eines
Kontos unter 100,- EUR sinkt.

Allgemeine Eigenschaften festlegen
Geben Sie dem Hinweis einen kurzen aber aussagekräftigen Namen, und ggf. wenn sinnvoll eine
längere Beschreibung.

"Alte Alarme nur auslösen wenn nicht älter als" und "Verantwortlicher" können Sie, bei Bedarf, auf
dem Reiter "Erweitert" angeben.

90

Welche Objekte sollen "überwacht" werden?
Die Menge der zu "überwachenden" Objekte wird hier genau so wie für BO-basierte Termine
definiert.



Ein Objekt muss den hier definierten Kriterien entsprechen, nachdem die
gewünschte Änderung eingetreten ist. FIXME! Aktuell kann man keinen Hinweis
definieren, der intuitiv so funktioniert, wie in obigem Beispiel angegeben. Man
kann zwar definieren, dass der Bestand auf einen Wert < 100 gesetzt wird, das
springt aber dann immer an, da man nicht definieren kann "aber nur für Konten,
bei denen der Bestand (vorher) >= 100 war" :-/ Siehe auch Ticket 103771604.

Wann soll der Hinweis ausgelöst werden?
Nachdem definiert wurde, welche Objekte überwacht werden sollen, muss festgelegt werden,
welche Ereignisse, z.B. Änderungen an diesen Objekten, den Hinweis auslösen sollen.

Hierzu gibt es verschiedene Möglichkeiten, die im Folgenden beschrieben werden.



Aus technischen Gründen kann nicht garantiert werden, wie schnell auf die
gewünschte Änderung reagiert wird. Die Auslösung erfolgt in der Regel zwar
wenige Sekunden, nachdem das Ereignis eingetreten ist, aber die genaue
Reaktionszeit ist unbestimmt. Insbesondere eine sofortige Reaktion in Echtzeit ist
praktisch nicht möglich; wird die schnellstmögliche Reaktion auf Ereignisse
benötigt, sollte die Behandlung in einer verifyOnServer()-Methode implementiert
werden (fortgeschrittenes Thema, Zugang zum Quellcode der Applikation ist dafür
erforderlich).

Ignorierte BTs/Änderungen

BedingteAlarme (Hinweise, aber auch BOBasierteTermine, Wiedervorlagen) ignorieren einige
BTs/Änderungen, die vom Alarmsystem selber durchgeführt wurden, da es ansonsten zu
Endlosschleifen kommen könnte. Dies sind

• Das Speichern von neu angelegten AlarmAusloesung-Einträgen

• Das Versenden der Standardbenachrichtigungen durch Alarme

• Die Deaktivierung von Alarmen aufgrund von Fehlern

• Änderungen aufgrund der Ausführung des "Speichern-Fehler-Skripts"

• Das Speichern der auslösenden Transaktion and von aufgetretenen Fehlern am
AlarmAusloesung-Objekt

Die beteiligten Entitäten sind Alarm (inkl. aller Subklassen) sowie AlarmAusloesung (inkl. aller
Subklassen) sowie MyTISMBenachrichtigung und MyTISMBenachrichtigungsauftrag (inkl. aller
Subklassen). Für diese Entitäten können also nicht alle Änderungen überwacht werden (wobei die
Anwendungsfälle dafür im Normalfall auch sehr beschränkt sein sollten).

91

#alarme_bobasiertertermin

BTs/Änderungen die anderweitig aufgrund der Auslösung eines Alarms erzeugt wurden - insb.
durch das beim Auslösen ggf. ausgeführte Skript - können dagegen von anderen Alarmen "erkannt"
und darauf reagiert werden.

Auslösung bei beliebiger Änderung, Erstellen oder Löschen von Objekten
(Unter-Reiter "Einfach")

Diese oft benutzten, einfachen Fälle können einfach durch Aktivieren der entsprechenden
Checkbox definiert werden:

• "… ein überwachtes Objekt erzeugt wurde" löst den Hinweis aus, sobald eines oder mehrer neue
Objekte, auf die die für den Hinweis definierte Maske (s.o.) passt, erstellt wurden.

• "… ein überwachtes Objekt geändert wurde" löst den Hinweis aus, sobald an einem oder
mehreren der überwachten Objekte irgendeine Änderung durchgeführt wurde; sei es z.B., dass
der Wert eines Attributes gesetzt, gelöscht oder geändert wurde oder ein Objekt in einer
Relation hinzugefügt oder gelöscht wurde.

• "… ein überwachtes Objekt gelöscht wurde" löst den Hinweis aus, sobald eines oder mehrere der
überwachten Objekte gelöscht wurden.

• "… ein überwachtes Objekt erschienen ist" löst den Hinweis aus, sobald ein existierendes Objekt
so geändert wurde, dass es jetzt in die Menge der vom Alarm überwachten Objekte passt.

• "… ein überwachtes Objekt verschwunden ist" löst den Hinweis aus, sobald ein existierendes und
vom Alarm überwachtes Objekt so geändert wurde, dass es jetzt nicht mehr in die Menge der
vom Alarm überwachten Objekte passt.

Auslösung mittels Auslösekriterien (Unter-Reiter "Erweitert")

Mit den sog. Auslösekriterien gibt es eine recht einfache aber sehr flexible Möglichkeit, festzulegen,
welche Änderungen erfolgt sein müssen, damit der Hinweis ausgelöst wird.

Mittels der Auslösekriterien geben Sie an, für welche Attribute ("Felder" oder "Eigenschaften" der
Objekte) welche Änderungen oder Ereignisse eingetreten sein müssen, damit der Hinweis für das
Objekt ausgelöst wird. Sie können für jeden Hinweis beliebig viele Auslösekriterien festlegen.
Jedes dieser Auslösekriterien hat drei wichtige Eigenschaften:

Attribut (erstes Feld)

Hiermit definieren Sie, an welchem Attribut der überwachten Objekte eine Änderung erfolgt sein
muss. Die Einträge in der Auswahlbox geben alle Attribute an, welche für die vom Alarm
überwachten Objekte verfügbar sind - mit Ausnahme von virtuellen und nicht-persistenten (weil
diese aus technischen Gründen hier nicht geprüft werden können) und System-Attributen.

Änderungstyp (zweites Feld)

Hiermit definieren Sie, wie sich das oben angegebene Attribut verändert haben muss, damit der
Hinweis ausgelöst wird. Je nach Typ des ausgewählten Attributs werden hier nur passende
Änderungstypen aufgeführt.

Wert (drittes Feld, ist ausgeblendet wenn nicht anwendbar)

Manche Änderungstypen, wie z.B. "wird gesetzt auf den Wert", erfordern einen Vergleichswert;

92

diesen können sie hier angeben. Wenn ein Änderungstyp keinen Vergleichswert erfordert, wird
dieses Feld automatisch ausgeblendet.
Die Werte können so eingegeben werden, wie Sie sie auch normalerweise in anderen MyTISM-
Formularen angeben. Für Datums- und Wahrheitswerte wird ebenfalls ein passendes
Eingabefeld angezeigt. Für Relationen (also Attribute die Verweise/Links auf ein oder mehrere
andere Objekte abbilden) können Sie das gewünschte Vergleichsobjekt mittels Popup
auswählen. Allerdings ist die Unterstützung für Relationen hier noch lückenhaft, so kann z.Zt.
z.B. noch nicht geprüft werden, ob ein Objekt zu einer Mehrfach-Relation hinzugefügt oder
entfernt wurde; dies ist z.Zt. nur mit einem Skript (s.u.) möglich.

Wenn Sie informiert werden wollen, wenn der Kontostand Ihres Kontos unter 100,- EUR
gesunken ist, setzen Sie Attribut (Feld 1) auf Kontostand, Änderungstyp (Feld 2) auf "wird
gesetzt auf Wert kleiner als" und Wert (Feld 3) auf 100.

Wenn Sie über jede Änderung Ihres Kontostandes informiert werden wollen, setzen sie
Änderungstyp (Feld 2) auf "wird in irgendeiner Weise geändert"; in diesem Fall brauchen Sie
keinen Vergleichswert anzugeben und das Wert-Feld wird automatisch ausgeblendet.

Wenn Ihnen die vordefinierten Möglichkeiten, z.B. die verfügbaren Vergleichsmöglichkeiten der
Änderungstypen, nicht ausreichen, steht Ihnen noch die Möglichkeit zur Verfügung, mittels eines
eigenen Skript praktisch jeden beliebigen Vergleich zu realisieren, auch wenn hierzu ein paar
Kenntnisse in Skript-Programmierung und etwas Wissen über die internen Abläufe in einer
MyTISM-Anwendung nötig sind.

Das Skript wird für jeden Transaktionsschritt (BP) der aktuellen Transaktion (BT), in der das
angegebene Attribut gesetzt, gelöscht oder geändert wurde, einmal ausgeführt. Wenn das Skript für
mindestens eine der BPs "true" zurückliefert, gilt das Auslösekriterium als erfüllt; wenn es für alle
BPs nur "false" liefert als "nicht erfüllt".

Im Skript stehen folgende vordefinierte Variablen zur Verfügung:

bp

Das BP-Objekt, welches gerade überprüft wird.

bo

Das Objekt (BO), welches erstellt/geändert/gelöscht wurde (kann null sein).

valueNew

Der neue/gesetzte Wert, aus dem BP-Objekt (als Java-Objekt! Kann null sein).

valueOld

Der alte/vorher gesetzte Wert, aus dem BP-Objekt (als Java-Objekt! Kann null sein).

valueCompare

Der von Ihnen eingegebene (Vergleichs)Wert (bereits umgewandelt in Java-Objekt! Kann null
sein wenn Sie keinen Wert eingegeben haben bzw. der gewählte Änderungstyp keinen

93

Vergleichswert erfordert und das Feld ausgeblendet war).

schema

Das SchemaI für die aktuelle MyTISM-Installation.

attribute

Das beim Auslösekriterium angegebene AttributeI (nicht der Name, sondern das Java-Objekt!
Kann null sein).

type

Der CBOType des beim Auslösekriterium angegebenen Attributes (kann null sein).

kriterium

Das AusloeseKriterium-Objekt (wird eher selten benötigt).

log

Ein Logger-Objekt (Name "de.ipcon.db.core.AusloeseKriterium") mit dem Debug- und andere
Meldungen ins Server-Log ausgegeben werden können.



Bitte verwechseln Sie dieses Skript nicht mit der unten erwähnten Möglichkeit
eines "globalen" Auslöseskript für den gesamten Hinweis. Das oben beschriebene
Skript stellt nur eine Option dar, weitere Vergleichsmöglichkeiten für
Auslösekriterien zu realisieren. Es ist nur ein Teil dieses einzelnen
Auslösekriteriums und bezieht sich immer nur auf Änderungen an einem
einzelnen Attribut.

Auslösung mittels Auslöseskript (Unter-Reiter "Skript")

Ein Auslöseskript gibt Ihnen vollkommene Freiheit, um die Auslösung eines Hinweises zu
bestimmen; um dieses Feature benutzen zu können, müssen sie allerdings über gewisse Kenntnisse
in Skript-Programmierung und etwas Wissen über die interne Struktur und Abläufe in MyTISM-
Anwendungen verfügen.

Mittels eines Auslöseskripts können Sie in jeder von Ihnen gewünschten Art und Weise überprüfen,
ob der Hinweis ausgelöst werden soll, oder nicht. Wenn das Skript "true" zurückliefert, wird der
Hinweis ausgelöst; bei "false" nicht.

if (bo.PreisInCentNN.intValue() > bo.MaxPreisInCentNN.intValue())
 if (!bo.PreisueberschreitungErlaubtNN.booleanValue())
 return true
return false

Im Skript stehen folgende vordefinierte Variablen zur Verfügung:

bo

Das Objekt (BO) welches erstellt/geändert/gelöscht wurde.

94

schema

Das SchemaI für die aktuelle MyTISM-Installation.

bp

Das BP-Objekt, welches gerade überprüft wird.

kriterium

Das AusloeseKriterium-Objekt (eher uninteressant).

log

Ein Logger-Objekt (Name "de.ipcon.db.core.AusloeseKriterium") mit dem Debug- und andere
Meldungen ins Server-Log ausgegeben werden können.

Das Skript wird für jeden Transaktionsschritt (BP) einmal ausgeführt, d.h. beim Speichern eines
Formulars im Normalfall mehrmals, wenn sich mehrere Werte geändert haben. Es reicht in diesem
Fall, wenn das Skript mindestens einmal "true" zurückliefert, um die Auslösung des Hinweises zu
veranlassen.

Mindestens eines oder alle gleichzeitig?

Wenn Sie mehrere Kriterien für die Auslösung des Hinweises angeben - also "… ein überwachtes
Objekt erzeugt wurde", "… ein überwachtes Objekt geändert wurde", "… ein überwachtes Objekt
gelöscht wurde", ggf. Auslösekriterien, ggf. ein Auslöseskript - so wird der Hinweis normalerweise
bereits ausgelöst, wenn mindestens eines dieser Kriterien zutrifft (die Kriterien sind mit "oder"
verknüpft).

Möchten Sie, dass alle Kriterien gleichzeitig zutreffen müssen, damit die Auslösung erfolgt, so
aktivieren sie die Checkbox "Alle Kriterien müssen zutreffen".

Sie haben zwei AuslöseKriterien definiert: * Kontostand, "wird gesetzt auf einen Wert kleiner als",
100 und * Kontostand, "wird gesetzt auf einen Wert größer als", 50 .

Im Normalfall würde der Hinweis immer auslösen, wenn sich der Kontostand ändert, da jede Zahl
entweder kleiner als 100 oder größer als 50 ist. Wenn Sie aber "Alle Kriterien müssen zutreffen"
setzen, müssen beide Kriterien zutreffen und der Hinweis wird nur ausgelöst, wenn der Kontostand
auf einen Wert größer als 50 und kleiner als 100 - also z.B. auf 80 - gesetzt wird.

Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?

Die Konfiguration für die Benachrichtigungen funktioniert hier genauso wie bereits für einfache
Termine beschrieben.

Von wem muss die Änderung stammen?

Wenn der Hinweis nur ausgelöst werden soll, wenn eine Änderung von einem bestimmten
Benutzer bzw. einem Mitglied einer bestimmten Gruppe durchgeführt wurde, können Sie dies mit
"… diesem Benutzer" und "… (oder) einem Mitglied dieser Gruppe" angeben.

Wenn Sie für beides einen Wert eintragen, reicht es aus, wenn die Änderung von dem Benutzer

95

#alarme_benachrichtigungen_para
#alarme_benachrichtigungen_para

oder einem Mitglied der Gruppe gemacht wurde; es ist also nicht erforderlich, dass der angegebene
Benutzer auch noch Mitglied der angegebenen Gruppe ist.

Wenn Sie für eines der beiden Kriterien keine Angabe machen, wird nur für das andere Kriterium
überprüft, ob die Änderung von diesem Benutzer bzw. dieser Gruppe gemacht wurde (was dann
zutreffen muss, damit die Änderung "gewertet" wird). Wenn Sie für beide Eigenschaften keinen
Wert angegeben haben, ist vollkommen egal, von welchem Benutzer oder welcher Gruppe die
Änderung stammt und die sonstigen Auslösekriterien werden immer überprüft.

Ab wann ist der Hinweis aktiv?

Wie bereits früher erwähnt werden Alarme normalerweise sofort aktiv, sobald sie das erste Mal
gespeichert werden. Hinweise beginnen also direkt nachdem sie erzeugt wurden, die ihnen
zugewiesene Menge von Objekten zu überwachen und bei Eintreten der durch ihre
AenderungsKriterien definierten Änderungen Alarme auszulösen.

Es ist jedoch auch möglich anzugeben, dass der Hinweis erst zu einem späteren Zeitpunkt aktiv
wird. Bei "Überwachung starten ab" (Reiter "Erweitert") können Sie ein Datum angeben, ab
welchem der Hinweis aktiv werden soll. Liegt dieses Datum in der Zukunft, werden erst die ab
diesem Datum erfolgenden Änderungen überprüft und für die Auslösung berücksichtigt. Wenn Sie
hier keinen Wert angeben oder das angegebene Datum in der Vergangenheit liegt, wird der
Hinweis ganz normal sofort aktiv.

96

Wiedervorlagen



Evtl. sind Wiedervorlagen nicht genau das, was Sie benötigen bzw. was Sie sich
darunter vorstellen. Wenn Sie z.B. in Ihrer Anwendung Dokumente mit einem
Attribut WiedervorlageAm haben, und Sie möchten, dass jeweils an den dort
eingetragenen Daten ein Alarm ausgelöst bzw. eine Benachrichtigung verschickt
wird, dann können Sie das mit einem BoBasierterTermin realisieren.

Wiedervorlagen sind sozusagen das Gegenteil der Hinweise. Alarme werden hier ausgelöst, wenn
innerhalb einer bestimmten, festgelegten Zeitspanne an einer Menge von überwachten Objekten
bestimmte Änderungen nicht durchgeführt wurden.

Beispiel: Der Projektleiter möchte benachrichtigt werden, wenn sich der Status eines Projekts
zwei Tage lang nicht geändert hat.

97

#alarme_bobasiertertermin

Allgemeine Eigenschaften festlegen
Geben Sie der Wiedervorlage einen kurzen aber aussagekräftigen Namen, und ggf. wenn sinnvoll
eine längere Beschreibung.

"Alte Alarme nur auslösen wenn nicht älter als" und "Verantwortlicher" können Sie, bei Bedarf, auf
dem Reiter "Erweitert" angeben.

Welche Objekte sollen "überwacht" werden?
Die Menge der zu "überwachenden" Objekte wird hier genau so wie für BO-basierte Termine
definiert.

Wann soll die Wiedervorlage ausgelöst werden?
Nachdem definiert wurde, welche Objekte überwacht werden sollen, muss festgelegt werden,
welche Ereignisse, z.B. Änderungen an diesen Objekten, verhindern sollen, dass die Wiedervorlage
ausgelöst wird.

Die Definition der Kriterien, die geprüft werden, erfolgt hier genau so wie für die Hinweise.

Nachdem die Wiedervorlage angelegt wurde, wartet sie für jedes der von ihr "überwachten"
Objekte eine festgelegte Zeit.

• Tritt innerhalb dieser Zeitspanne das gewünschte (durch die Kriterien definierte) Ereignis ein
oder wird die gewünschte (durch die Kriterien definierte) Änderung an einem Objekt
durchgeführt, wurde damit die Auslösung der Wiedervorlage für das betreffende Objekt
verhindert und die Überwachung für dieses Objekt wird beendet (außer wenn "Alarm bleibt
auch nach Kriterienerfüllung weiterhin aktiv" gesetzt ist).

• Bleibt jedoch das gewünschte Ereignis innerhalb dieser Zeitspanne aus oder tritt die
gewünschte Änderung für ein Objekt nicht ein, so löst die Wiedervorlage am Ende der
Zeitspanne für das betreffende Objekt Alarm aus. Dann beendet sie die Überwachung für das
betreffende Objekt (außer wenn "Alarm bleibt auch nach Auslösung weiterhin aktiv" gesetzt ist).

Wie oben erwähnt, wird das genaue Verhalten der Wiedervorlage mittels dreier Einstellungen
definiert:

Inaktivitätszeit "… die Auslösekriterien … NICHT zutrafen."

Dies gibt die Zeitspanne an, welche die Wiedervorlage auf das Eintreten der Ereignisse bzw.
Änderungen warten soll.

Beispiel: Wollen Sie benachrichtigt werden, wenn sich an einem Projekt zwei Tage nichts getan
hat, so geben Sie hier "2d" an.

Neuterminierung nach Aufschub "Alarm bleibt auch nach Kriterienerfüllung weiterhin
aktiv", Reiter "Erweitert"

98

#alarme_bobasiertertermin
#alarme_hinweis_ausloesung
#alarme_wiedervorlage_inaktivitaetszeit

Normalerweise wird die Überwachung eines Objektes beendet, nachdem die definierte
Änderung für dieses Objekt innerhalb der Inaktivitätszeit eingetreten ist und die Wiedervorlage
für dieses Objekt damit verhindert wurde.
Wollen Sie jedoch, dass die Überwachung auch weiter fortgeführt wird, obwohl das gewünschte
Ereignis oder die gewünschte Änderung einmal eingetreten ist, so setzen sie dieses Flag. Wenn
das Flag gesetzt ist, heißt das im Endeffekt, dass das gewünschte Ereignis oder die gewünschte
Änderung regelmäßig immer wieder eintreten muss, um zu verhindern, dass die Wiedervorlage
letztendlich ausgelöst wird.

Beispiel: Der Fertigstellungsstand eines Projektes muss mindestens einmal jeden Tag
aktualisiert werden.

Neuterminierung nach Auslösung "Alarm bleibt auch nach Auslösung weiterhin aktiv", Reiter
"Erweitert"

Normalerweise wird die Überwachung eines Objektes ebenfalls beendet, nachdem die definierte
Änderung für dieses Objekt innerhalb der Inaktivitätszeit nicht eingetreten ist und die
Wiedervorlage für dieses Objekt ausgelöst wurde, d.h. für jedes überwachte Objekt löst die
Wiedervorlage nur ein einziges Mal einen Alarm aus (es gibt gewisse Ausnahmen, s.u.).
Wollen Sie jedoch, dass die Überwachung auch danach weiter fortgeführt wird, so setzen sie
dieses Flag. Wenn das Flag gesetzt ist, heißt das im Endeffekt, dass regelmäßig wieder nach
erneutem Ablauf der Inaktivitätszeit ein Alarm für das betreffende Objekt ausgelöst wird.

Beispiel: Wenn eine Rechnung nicht innerhalb eines Tages bezahlt wurde, soll an jedem
folgenden Tag eine Benachrichtigung darüber versandt werden, nicht nur einmal.

Wer soll Benachrichtigungen erhalten und wie sollen
diese aussehen?
Die Konfiguration für die Benachrichtigungen funktioniert hier genauso wie bereits für einfache
Termine beschrieben.

Wiedervorlage-Status
Wenn eine neue Wiedervorlage angelegt wird, legt MyTISM automatisch für alle überwachten
Objekte sogenannte Wiedervorlage-Status an, welche Daten beinhalten, die für die korrekte
Überwachung und Auslösung des Alarms für die Objekte benötigt werden.

Je nach Anzahl der zu überwachenden Objekte, kann das Anlegen der Status einige Zeit in
Anspruch nehmen. Die Wiedervorlage wird erst dann aktiv, wenn alle benötigten Status angelegt
wurden.

99

#alarme_benachrichtigungen_para
#alarme_benachrichtigungen_para

Benachrichtigung bei Alarm-Auslösung
Wenn ein Alarm ausgelöst wird, werden nacheinander drei verschiedene Mechanismen in Gang
gesetzt:

1. Die hartkodierte trigger()-Methode der Klasse, zu der der Alarm gehört, wird aufgerufen.

2. Ein evtl. für den Alarm eingetragenes Benachrichtigungsskript wird ausgeführt.

3. Die Standard-Benachrichtigungen werden ausgeführt.

Hartkodierte trigger()-Methode
Jede Subklasse der Alarm-Basisklasse Alarm erbt deren trigger()-Methode. Bei der Auslösung eines
Alarms wird diese Methode automatisch vom Alarmsystem aufgerufen und kann beliebige
Aktionen ausführen.

Wenn die Methode "true" zurückliefert, wird angenommen, dass alle bei der Auslösung
erforderlichen bzw. gewünschten Aktionen vollständig durchgeführt wurden; in diesem Fall
werden weder das Benachrichtigungsskript noch die Standard-Benachrichtigungen ausgeführt.

Bei allen standardmässig in MyTISM implementierten Alarm-Klassen (also den in dieser
Dokumentation erwähnten) tut diese Methode nichts und liefert "false" zurück, so dass mit der
Bearbeitung fortgefahren wird; sie brauchen sich in diesem Fall also keine weiteren Gedanken
hierzu zu machen. Es kann allerdings sein, dass für Ihre MyTISM-Installation spezielle Subklassen
von Alarm existieren, die eine "richtige" trigger()-Methode besitzen; wenn dies der Fall ist, kann
Ihnen Ihr MyTISM-Administrator weitere Informationen hierzu geben.

Benachrichtigungsskript "Sende Benachrichtigungen
mittels dieses Skripts", Reiter "Erweitert"
Wenn Ihnen die Standard-Möglichkeiten (s.u.) für Benachrichtigungen nicht ausreichen, können Sie
mit Hilfe der Benachrichtigungsskript-Eigenschaft der Alarme weitere Tätigkeiten ausführen
lassen.

Sie können hier ein Stück Groovy-Code angeben, das in der von Ihnen gewünschten Art und Weise
Benachrichtigungen auslöst oder auch andere Aktionen ausführt.

Über die api Variable können transaktionelle Änderungen aufgezeichnet werden, die bei der
Auslösung des Alarms automatisch gespeichert werden. Via api.getTransaction() bekommt man
eine Transaction, um Objekte zu laden und diese zu includen, um Änderungen an diesen
aufzuzeichnen. Ein Aufruf von api.getBO(Long, Class) initialisiert ebenfalls bereits eine neue
Transaction, um das Objekt für die übergebene Id zu laden.


Ein erneuter Aufruf von api.getTransaction gibt immer wieder die gleiche
Transaction zurück, da es nur eine im Kontext des Benachrichtigungsskripts gibt.

100

http://www.groovy-lang.org/


Bei Systemen, in denen Alarme auch auf Änderungen durch andere Alarme
getriggert werden können, muss man sehr gut aufpassen, dass dabei keine
unerwünschten Schleifen entstehen.

Wenn das Groovy-Skript "true" zurückliefert, wird angenommen, dass alle erforderlichen Aktionen
durchgeführt wurden und die Standard-Benachrichtigungen werden nicht mehr ausgelöst. Wenn
das Skript "false" zurückliefert, werden die Standard-Benachrichtigungen zusätzlich zu allen evtl.
bereits vom Skript gemachten Aktionen auch noch ganz normal ausgelöst.

Sollte im Skript ein Fehler auftreten (d.h. eine Exception geworfen werden) wird die Bearbeitung
ebenfalls abgebrochen, d.h. auch in diesem Fall werden die Standard-Benachrichtigungen nicht
mehr ausgelöst.

Beispiel, Mitarbeiter implementiert NotificationReceiverI:

api.getLogger().info("Alarm " + alarm + " wurde um " + dateNow + " ausgeloest!")
api.sendNotification(api.getBOById(idBO, de.beispielprojekt.bo.Mitarbeiter.class))

Beispiel, Empfänger hängt per Attribut "Benutzer" an auslösendem Objekt:

api.sendNotification(getTriggeringBO().getBenutzer())

Beispiel, Mail an beliebige e-Mail-Adresse senden:

api.sendNotificationByEmail("nobody@example.com")

Beispiel, Mail senden und Mailversanddatum am auslösenden BO setzen:

import com.oashi.m.bo.Rechnung

def r = api.getTriggeringBO() as Rechnung
def tx = api.getTransaction("Mailversanddatum via Alarm setzen.")
r = tx.include(r)
r.Mailversanddatum = new Date()

return false // do send default notifications

Es stehen die folgenden vordefinierten Variablen zur Verfügung:

alarm

Der Alarm, der ausgelöst wurde.

dateNow

Das Datum und die Zeit (als java.util.Date-Objekt) wann der Alarm ausgelöst wurde.

api

Ein Objekt vom Typ BedingterAlarmBenachrichtigungsScriptAPI (für Hinweise und

101

Wiedervorlagen), BOBasierterTerminBenachrichtigungsScriptAPI (für BO-basierte Termine) oder
EinfacherTerminBenachrichtigungsScriptAPI (für einfache Termine) welches nützliche Methoden
zur Verfügung stellt.

log

Ein Logger-Objekt (Name "de.ipcon.db.alarm.BenachrichtigungsScriptAPI", das gleiche Objekt
was auch api.getLogger() liefert) mit dem Debug- und andere Meldungen ins Server-Log
ausgegeben werden können.

Für BO-basierte Termine, Hinweise und Wiedervorlagen, die sich ja immer auf BOs beziehen,
stehen noch zwei zusätzliche Variablen zur Verfügung:

idBO

Der ID des BOs, für welches der Alarm ausgelöst wurde.

bot

Der BOT des BOs, für welches der Alarm ausgelöst wurde (kann evtl. null sein).

Für Hinweise und Wiedervorlagen, die ja immer durch ein Ereignis ausgelöst werden, ist
schlussendlich noch eine Variable definiert:

bt

Die BT, welche den Alarm ausgelöst hat.

Standard-Mechanismus
Wenn ein Alarm ausgelöst wird, werden alle dafür eingetragenen Benutzer benachrichtigt (sofern
das Benachrichtigungssystem aktiviert und richtig konfiguriert ist).

102

Ein Benutzer erhält für eine Alarm-Auslösung immer nur eine Benachrichtigung, auch wenn z.B.
für einen Alarm mehrere Gruppen eingetragen wurden und der Benutzer Mitglied in mehreren
dieser Gruppen ist oder der Benutzer selbst ebenfalls für den Alarm eingetragen wurde.

Der Betreff und der Text der entsprechenden Benachrichtigungen können für jeden Alarm eigens
definiert werden. Die Definition der Textvorlagen erfolgt im Format GSP (Groovy Server Pages); die
eigentlichen Texte werden bei der Auslösung dynamisch aus diesen Vorlagen generiert.

Eine genaue Beschreibung von GSP würde hier zu weit führen; für Informationen dazu siehe
http://groovy.codehaus.org/Groovy+Templates. Hier nur ein kleines

Beispiel:

Dies ist eine Benachrichtigung fuer ${benutzer.getName()}!
Der Alarm ${alarm.getName()} wurde am ${api.formatDate(dateNow, "dd.MM.yyyy")} um
${api.formatDate(dateNow, "HH:mm:ss")} Uhr ausgeloest.

Folgende vordefinierte Variablen stehen zur Verfügung:

benutzer

Der Benutzer, für den die Benachrichtigung gedacht ist; kann null sein, wenn die
Benachrichtigung mittels des Benachrichtigungsskripts erzeugt wurde und nicht an einen
Benutzer, sondern ein anderes Objekt verschickt wurde.

empfaenger

Das Empfaenger-Objekt, für das die Benachrichtigung gedacht ist; ist immer gesetzt. Wenn die
Benachrichtigung an einen Benutzer ging, ist dieser Wert gleich dem Wert der Variable
"benutzer".

alarm

Der Alarm, der ausgelöst wurde.

dateNow

Das Datum und die Zeit (als java.util.Date-Objekt) wann der Alarm ausgelöst wurde (oder
genauer: Wann das MyTISMBenachrichtigungs-Objekt erstellt wurde; diese Zeiten können sich
um einige Sekunden unterscheiden).

api

Ein Objekt vom Typ TemplateScriptAPI, welches nützliche Methoden zur Verfügung stellt.

Für BO-basierte Termine, Hinweise und Wiedervorlagen, die sich ja immer auf BOs beziehen, steht
noch eine zusätzliche Variable zur Verfügung:

bo

Das Objekt (BO) für welches der Alarm ausgelöst wurde.

Für Hinweise und Wiedervorlagen, die ja immer durch ein Ereignis ausgelöst werden, ist
schlussendlich noch eine Variable definiert:

103

http://groovy.codehaus.org/Groovy+Templates

bt

Die BT, welche den Alarm ausgelöst hat.

Schliesslich können spezielle Unterklassen von Alarmen evtl. auch noch weitere Variablen zur
Verfügung stellen.



Wenn mehrere von einem Hinweis oder einer Wiedervorlage überwachte BOs
erstellt, geändert oder gelöscht wurden, wird für jedes dieser BOs überprüft, ob
eine Auslösung erfolgt; wenn ja wird für jedes entsprechende Objekt (BO) eine
Benachrichtigung versendet.

104

Logging/Historie und AlarmAusloesungen
-Objekte
Jede Auslösung eines Alarms wird automatisch "mitgeloggt". Für jede Auslösung wird ein Objekt
vom Typ AlarmAusloesung angelegt, mit den Informationen, welcher Alarm wann ausgelöst wurde;
für BO-basierte Termine, Hinweise und Wiedervorlagen Außerdem noch, welches Objekt die
Auslösung verursacht hat.

Die AlarmAusloesungen können z.B. über das Lesezeichen "Alarme → AlarmAusloesungen" eingesehen
werden.

105

Sonstige Infos

"Verpasste" bzw. "Verspätete" Auslösung
Es kann passieren, das ein Alarm eigentlich zu einem bestimmten Zeitpunkt hätte ausgelöst werden
sollen, dies jedoch nicht passiert ist, weil zu diesem Zeitpunkt das Alarmsystem deaktiviert war.

In solchen Fällen wird der Alarm dann normalerweise sofort ausgelöst, sobald das Alarmsystem
wieder aktiviert wird.

Dieser Fall kann z.B. auch dann eintreten, wenn bei einer MyTISM-Installation mit
synchronisierenden Instanzen eine Änderung, die z.B. einen Hinweis auslöst, auf einer der
synchronisierenden Instanzen (ohne Alarmsystem) passiert ist. Wenn nun diese Änderung z.B.
durch Netzwerkprobleme oder falsch konfigurierte Synchronisationseinstellungen erst nach einer
längeren Zeit auf die autoritative Instanz (mit aktiviertem Alarmsystem) übertragen wird, wird
auch hier der Hinweis erst mit dieser Verspätung ausgelöst.

Durch die Angabe von "Alte Alarme nur auslösen wenn nicht älter als" (siehe Abschnitt
#alarme_eigenschaften) können Sie festlegen, ob bzw. mit wie viel Verspätung solche Alarme
trotzdem noch ausgelöst werden.

Neuinitialisierung der Objekt-Status für BO-basierten
Terminen und Wiedervorlagen
Bestimmte Änderungen an bereits bestehenden BO-basierten Terminen oder Wiedervorlagen
können dazu führen, dass die für die interne Verarbeitung gespeicherten Informationen zur
Auslösung des Alarms für die überwachten Objekte neu initialisiert werden (müssen).

Dies geschieht z.B. bei einem Wechseln der BOMaske ("Überwache die Objekte …") oder auch wenn
nur "innerhalb" der Maske die Entitaet-Eigenschaft geändert wurde.

Bei solchen Änderungen werden die zum Alarm zugehörigen *AlarmStatus neu initialisiert,
genauso, als wenn der Alarm neu angelegt worden wäre.

Folgende Änderungen führen zur Neuinitialisierung:

• Für BO-basierter Termin: Jede Änderung an Attribut, Script, Maske sowie das Aktivieren von
NeuterminierungNachAusloesung.

• Für Wiedervorlagen: Jede Änderung an AusloeseKriterien, AchtetAufBOAendern,
AchtetAufBOErstellen, AchtetAufBOLoeschen, Script, AenderungVonBenutzer, AenderungVonGruppe,
AKsMitUndVerknuepfen, UeberwachungStartenAb, Inaktivitaetszeit und Maske sowie das Aktivieren
von NeuterminierungNachAusloesung.

106

#wiedervorlagestatus
#wiedervorlagestatus

CBOFormat
Diese relativ kleine Klasse hat mittlerweile einen derart hohen Stellenwert im Umgang mit MyTISM
erlangt, dass ich ihm hiermit ein eigenes Kapitel widme - ohne ein fundiertes Verständnis der
Leistungen dieses Mechanismus macht man sonst viele Sachen um Magnituden komplizierter als
nötig - ob es Felder im Report oder einfach "schöne" Lesezeichen sind. Außerdem kann das
CBOFormat im Export-Fall sehr nützlich sein.

107

Was ist CBOFormat?
Ursprünglich wurde CBOFormat entwickelt, um Variablen in Texten auszutauschen und dabei
jeglichen "echten" Programmcode zu vermeiden. Dabei ging es um die Abbildung von Regeln wie
"Wenn der Vorname leer ist, darf das Komma nach dem Nachnamen nicht gedruckt werden",
"drucke die Emailadresse nur bis zum @ und den Rest in die nächste Zeile", oder "wenn das Feld
nicht leer ist, dann kommt da noch folgender Text hin".

Alles Geschichten, für die man normalerweise ein Stückchen Programmcode braucht, aber wer
schon einmal versucht hat, geschweifte Klammern und diverse andere Sonderzeichen vor dem Rest
des Textes zu maskieren - man denke einmal nur an nötige Zeilenumbrüche innerhalb eines etwas
komplizierteren Scripts, von Einrückungen ganz zu schweigen - wird ein Lied davon singen
können, wie lesbar dann der Programmtext noch ist, ganz zu schweigen von der leicht
"zerscripteten" Umgebung.

Es musste also eine Art Pseudocode her, der mit wenig Ballast diese Aufgaben bewerkstelligen kann
und trotzdem den Funktionsumfang möglichst komplett abdeckt. Hier ist er:

Zunächst sei erwähnt, daß CBOFormat immer einen Satz Variablen und ein sogenanntes Root-
Objekt zur Auswertung übergeben bekommt, und außerdem kompletten Zugriff auf das MyTISM-
Schema hat und somit alle Entitäten deren Attribute kennt.

Nun zum ersten Beispiel:

Ein Ansprechpartner mit Familienname und Rufname soll konsistent formatiert werden. Gehen wir
mal von einem Ansprechpartner-Objekt mit Familienname, Vorname, Titel, Geburtstag und
AnzahlKinder aus. Der Ansprechpartner soll in der Form "Familienname, Rufname, Titel" gedruckt
werden; falls aber der Rufname nicht angegeben ist, soll das Komma nicht mit angedruckt werden;
ebenso soll beim Titel verfahren werden. Das sieht so aus:

Familienname(', 'Rufname)(', 'Titel)

Die runde Klammer bewirkt, dass wenn ein Feld darin leer ist, der ganze Konstrukt verschwindet.
Mit ? ' ? Die ' um das Komma leiten statischen Text ein. Die Klammer bindet sozusagen einen
Auswertungsversuch zusammen - geht er schief, dann verschwindet er komplett.

Das ganze kann man auch etwas weiter ausbauen:

(Familienname):('Kein Familienname angegeben!')(', 'Rufname)(', 'Titel)

Wie man sieht, kann man hinter einer Klammer einfach einen Doppelpunkt und eine weitere
Klammer angeben, die dann benutzt wird, wenn die erste Klammer weg fällt. Das ist fast so wie die
if-then-Makros in Word zum Beispiel, nur dass man in unserem Fall so viele Klammern mit
Doppelpunkten verketten kann, wie man will (im Fall einer polymorphen Relation kann das sehr
nützlich sein).

Man stelle sich jetzt vor, daß man ein Korrespondenz-Objekt an die Hand bekommt und nun diesen

108

Ansprechpartner in einer CBOFormat-Klausel formatieren soll: (wir nehmen an, daß der
Ansprechpartner im Korrespondenz-Objekt über das Attribut "Adressat" definiert ist)

(Adressat.Familienname):('-')(', 'Adressat.Rufname)(', 'Adressat.Titel)

Sieht umständlich aus, weil das Adressat bei vermehrter Nutzung sehr oft angegeben werden muss.
Dafür gibts einen einfacheren Weg: Vorklammern über [:

Adressat[(Familienname):('-')(', 'Rufname)(', 'Titel)]

Ein besonderes Verhalten zeigt sich bei der Adressierung von Entitäten. Nehmen wir das Beispiel
von vorhin, und notieren einfach folgendes:

Adressat

Da nun das Ergebnis der Evaluierung ein BO ist, wird dessen Schema-Description zur Formatierung
herangezogen. Wenn also im Schema ein

... description="(Familienname):('-')(', 'Rufname)(', 'Titel)"

steht, dann ist die Ausgabe identisch mit dem oberen Beispiel.

Den gleichen Effekt hat die Verwendung der Variable '.', welche für die Root-Variable steht. Das ist
recht nützlich, um eine bestimmte Information vor oder nach der schon vorhandenen (und
gegebenenfalls komplexen) Beschreibung hinzuzufügen:

Adressat['['Id'] '.]

Obiges Beispiel gibt zum Beispiel den Adressaten wie im Beispiel davor aus, allerdings mit seiner Id
in eckigen Klammern.

109

Abweichendes Attribut aus der
Attributkette als Label verwenden
Bei der Anzeige von Attributwerten kann im Attributpfad das Trennzeichen - statt des normalen .
verwendet werden, um eine beschreibende Bezeichnung für den angezeigten Wert am Ende des
Attributpfad zu erhalten. Durch das Setzen eines Strichs als Trennzeichen (quasi eine "Markierung"
in der Attributkette) wird bewirkt, dass für das Label der Name des Attributs direkt vor dem Strich
verwendet wird, anstatt wie sonst üblich der Attributname am Ende des Pfades. Dies hat den
Vorteil, dass man sich eine separate Angabe des Labels über die Syntax $R spart und trotzdem eine
spezifische beschreibende Bezeichnung für den Attributwert erhält.

Beispiele

MehrwertSteuer-Hoehe -> wirkt wie ein $R{MehrwertSteuer} als Label (statt $R{Hoehe})
Beleg.Adressat-Name1 -> wirkt wie ein $R{Adressat} als Label (statt $R{Name1})
Beleg-Adressat.Name1 -> wirkt wie ein $R{Beleg} als Label (statt $R{Name1})

110

Datum und Zeitwert-Formatierung
Eine weitere interessante Möglichkeit ist das Formatieren von Datum und Zeitwerten. Das
geschieht einfach über das Anhängen einer geschweiften Klammer direkt an den Wert:

"Geburtstag{dd.MM.yyyy, HH:mm:ss 'Uhr'}"

Das würde den Geburtstag in der Form "24.04.1971, 15:35:00 Uhr" ausgeben.

Die verwendbaren Zeichen finden sich in der nachstehenden Tabelle:

Table 2. Die Bezeichner des SimpleDateFormat

Symbol Datums- oder Zeitkomponente Beispiel

G Zeitalter v.Chr, n.Chr

y Jahr 2004, 04

Y Wochenjahr 2004, 04

M Monat im Jahr Juli, Jul, 07

w Woche im Jahr 27

W Woche im Monat 2

D Tag im Jahr 189

d Tag im Monat 10

F Wochentag im Monat 2 (also der 2. Dienstag im
aktuellen Monat)

E Wochentag textuell Dienstag, Di

a AM/PM PM

H Stunde im Tag (0-23) 0

k Stunde im Tag (1-24) 24

K Stunde in AM/PM (0-11) 0

h Stunde in AM/PM (1-12) 12

m Minute in der Stunde 30

s Sekunde in der Minute 55

S Millisekunden 978

z Zeitzone Generisch Pazifische Standardzeit; PST;
GMT-08:00

Z Zeitzone nach RFC822 -0800

' Textbegrenzer 'Uhr'

111



Sollte in der Formatierung die Woche im Jahr benutzt werden (w), sollte für das
Jahr das Wochenjahr benutzt werden (Y statt y). Sonst könnte es zu Verwirrungen
bei Daten am Anfang des Jahres kommen, da die ersten Tage oft noch in die letzte
Woche des Vorjahres fallen.

112

Zahlen-Formatierung
Zahlen lassen sich ebenso wie formatieren:

"AnzahlKinder{#,##0.000}"

würde zum Beispiel die Anzahl Kinder auf 3 Stellen nach dem Komma, die Tausender dreistellig
gruppiert ausgeben.. :-)

Ein Zahlenformat beinhaltet optional ein negatives Format, abgetrennt durch ? ; ?, z.B.
#,##0.00+;#,\##0.00-.

Die Definition der Symbole in nachstehender Tabelle:

Table 3. Die Bezeichner des DateFormat

Symbol Ort Landesabhängig Bedeutung

0 Nummer ja Ziffer

Nummer ja Ziffer, 0 wird nicht
gedruckt

. Nummer ja Dezimaltrenner

- Nummer ja Minus-Symbol

, Nummer ja Gruppierungs-Symbol

E Nummer ja Mantissen/Exponent-
Separator.

; Formattrenner ja Trennt positives von
negativem Format.

% Pre/Suffix ja Multipliziere mit 100
und zeige als Prozent.

\u2030 Pre/Suffix ja Multipliziere mit 1000
und zeige als Promille.

113

\u00A4 Pre/Suffix ja Platzhalter für das
Währungssymbol, wird
ersetzt durch das
aktuelle
Währungssymbol.
Doppelt zeigt es das
internationale
Währungssymbol.
Wenn es innerhalb
eines Formates benutzt
wird, tauscht es den
Dezimaltrenner gegen
den
Währungsdezimaltren
ner aus (ist in manchen
Ländern üblich).

' Pre/Suffix nein Textbegrenzer für
spezielle Zeichen.

114

Funktionsaufrufe
Ein weiteres, allerdings selten benutztes Feature ist die Verwendung von Funktionen im
CBOFormat. Das liegt nicht zuletzt daran, daß durch die Verwendung eines reinen Forward-Parsers
eigentlich immer nur der aktuelle Wert zur Verfügung steht und somit nur reine String-
Modifikationen möglich sind. Nichts desto trotz seien sie hier kurz vorgestellt. Eingeleitet werden
die Funktionen mit | (Pipe), die Parameterübergabe erfolgt in Klammern. Die Klammern nach dem
Funktionsnamen sind obligatorisch. Meist werden die Funktionen erst dann wirklich nützlich,
wenn man sie zusammen mit der runden Klammer einsetzt.

equals(s)

Vergleicht den gerade aktiven String mit dem angegebenen String. Fällt der Vergleich positiv aus,
bleibt der aktive String unverändert, wenn nicht, wird der aktive String geleert.

notEqual(s)

Vergleicht den gerade aktiven String mit dem angegebenen String. Fällt der Vergleich negativ
aus, bleibt der String unverändert, wenn nicht, wird der aktive String geleert.

(Ansprechpartner.Familienname|notEqual('bla')):('blablabla')

Das Beispiel gibt im Falle eines Familiennamens "bla" statt dessen ein
"blablabla" aus

reverse()

Dreht den aktuellen String rückwärts.

cutLeftFrom(s)

Schneidet den aktuellen String an der Kante des übergebenen Strings links ab.

Ansprechpartner.Emailadresse|cutLeftFrom('@')

Ergibt im Falle von "foo@bar.com" ein "foo".

cutRightFrom(s)

Schneidet den aktuellen String an der Kante des übergebenen Strings rechts ab.

Ansprechpartner.Emailadresse|cutRightFrom('@')

Ergibt im Falle von "foo@bar.com" ein "bar.com".

115

ifTrue()

Falls der aktuelle String nicht leer ist, ist er es danach.

(Ansprechpartner.EmailAdresse|ifTrue()):('ja')

Gibt für den Fall, daß der Ansprechpartner eine Mailadresse hat, ein
"ja" zurück.

ifFalse()

Falls der aktuelle String leer ist, ist er danach nicht mehr leer.

(Ansprechpartner.EmailAdresse|ifFalse()):('nein')

Gibt für den Fall, daß der Ansprechpartner keine Mailadresse hat, ein
"nein" zurück.

stripLF()

Diese Operation entfernt alle Zeilenschaltungen aus dem aktuellen String.

left(count)

Gibt die ersten count Zeichen vom aktuellen String zurück.

right(count)

Gibt die letzten count Zeichen vom aktuellen String zurück.

strip()

Entfernt alle Leerzeichen um den aktuellen String herum.

116

Script-Verwendung
Nun gibt es immer noch Situationen, da geht’s ohne Script einfach nicht. Dafür kann man auch ein
Beanshell-Script in doppelter geschweiften Klammern angeben und dann den passenden String
zusammenbasteln.

Um an die erforderlichen Daten heranzukommen wird die Root-Referenz als "bo" und alle im
Variablenhash definierten Variablen unter ihrem dort hinterlegten Namen eingeblendet.

'vorgestern war'{{new
SimpleDateFormat("EEE").format(Calendar.getInstance().roll(Calendar.DAY_OF_YEAR,-
2).getTime())}}

Dabei kommt die Eigenschaft der Beanshell, das letzte Ergebnis als Rückgabewert zu liefern zu
Hilfe, sonst wäre bei dem Beispiel noch ein return …; notwendig gewesen.

117

Wo kann man das CBOFormat nun
überhaupt einsetzen?
Das CBOFormat findet seine Anwendung zunächst einmal in der Schema-Definition, und zwar in
Form des "description" Attributs. Es soll helfen, die Entitäten mit einer Art textueller Beschreibung
auszustatten (Programmierern als toString() Methode bekannt). Ich wollte aber aus verschiedenen
Gründen nicht die toString() Methode überladen, weil eine für das Debugging wichtige Information,
der hashCode, mit angegeben wird, der aber für den Benutzer völlig nichtssagend ist; zudem sind
mehrere solcher descriptions denkbar (wenn auch (noch) nicht implementiert) oder können auch
ad hoc angefordert werden.

Dafür hat jede vom System generierte Entität eine describe-Methode, die einen optionalen
Stringparameter bekommt und auf diesem Weg einen String der gewünschten Form ausgibt. Das
kann vom Reportgenerator über direkte Objektreferenzen direkt benutzt werden (zum Beispiel
$F{THIS}.describe()), oder innerhalb einer BO-Methode für Debugging Ausgaben, Export-Formate…

In Solstice begegnet man dem CBOFormat ständig. Überall, wo ein "displayFormat" angegeben
werden kann, ist das CBOFormat am Werk; in Lesezeichen die Spaltendefinition, in Formularen für
Labels, TablePopups, in den Fenstertiteln etc.

118

MEX - Makros und erweiterte
Query-Funktionen
Der bisher im MyTISM verwendete OQL-Parser unterstützt nicht alle gewünschten Funktionen. Zu
den fehlenden Funktionen gehören unter anderem Subqueries, Subclass-Casting, explizite Joins,
Unions und Fetch-Strategien. Wir können nicht alle Probleme auf einmal lösen, doch für Union und
die damit ersetzbaren Subclass-Castings gibt es eine Lösung: MEX.

Diese Lösung ist kein kurzfristiger Workaround, sondern eine nachhaltige Erweiterung. Sie hilft,
Roundtrips in Queries zu reduzieren und komplexe Abfragen in der GUI handhabbar zu machen.
MEX ist ein Präprozessor, der bereits vorhandene API-Funktionen für den Benutzer zugänglich
macht.

119

Definition von MEX
Die Auswertung der MEX-Konstrukte erfolgt an verschiedenen Stellen im Kernel, abhängig davon,
welche Komponente zuständig ist. MEX ist eine Sprache, die hauptsächlich aus verschachtelten
Blöcken mit geschweiften Klammern besteht. Ein bestehender Text wird mit MEX-Tags versehen
und auf der Serverseite schrittweise ausgewertet. Jede Verarbeitungsstufe entfernt dabei
bestimmte Klammerblöcke.

Falls nach der Auswertung noch nicht behandelte Klammerblöcke übrig bleiben, wird eine
Fehlermeldung ausgegeben. Diese nennt den unausgewerteten Block, sodass der Fehler leicht
identifiziert werden kann.

Der Kernbestandteil von MEX ist der MEXTransformer, der drei Konstrukte unterstützt:

Sichtbare Variablendefinition
Eine Variable wird definiert, und ihre Definition wird an dieser Stelle durch den Wert ersetzt.

{hausnr=4711}

Ergebnis:

4711

Die Variable hausnr erhält den Wert 4711.

Unsichtbare Variablendefinition
Eine Variable wird definiert, aber die Definition wird aus dem Quelltext entfernt.

{!hausnr=4711}

Die Definition verschwindet vollständig, aber die Variable hausnr hat dennoch den Wert 4711.

Variablenexpansion
Eine Variable wird durch ihren gespeicherten Wert ersetzt.

{=hausnr}

Ergebnis:

120

4711

(Vorausgesetzt, die Variable wurde zuvor mit diesem Wert definiert.)

Es ist wichtig zu wissen, dass Variablendefinition und -auswertung in verschiedenen Stufen
erfolgen. Eine Variable hat immer den zuletzt zugewiesenen Wert an allen Stellen, an denen sie
verwendet wird.

Beispiel:

{a=1}{=a}+{=a}={a=2}{=a}

Ergebnis:

2+2=2

Dadurch kann es passieren, dass Werte verwendet werden, bevor die zugehörigen Variablen
definiert wurden. Innerhalb der GUI können Variablen nicht gezielt früher oder später definiert
werden. Sie werden einmal festgelegt und behalten ihren Wert während der gesamten Auswertung.

Diese drei Konstrukte sind die einzigen, die MEX direkt unterstützt. Weitere Funktionen werden
durch andere "Schichten" bereitgestellt. Mehr dazu im nächsten Kapitel.

121

Unterstützung auf der Query-Seite
MEX wird derzeit im Backend ausschließlich für Queries genutzt. Der CastorPersistenceHandler, der
Queries an den ORM Castor übermittelt, unterstützt folgende Syntax:

 SELECT a FROM de.ipcon.db.core.Formular a WHERE a.BOTyp.Name="Beleg"
{UnionAll SELECT a FROM de.ipcon.db.core.Schablone a WHERE a.BOTyp.Name="Beleg"}

Hierbei ist zu beachten, dass BOTyp eine Eigenschaft ist, die nicht von der Oberklasse Struktur
geerbt wird. Daher kann sie nicht direkt über Struktur abgefragt werden.

Dieses Beispiel gibt in einem einzigen Roundtrip zum Backend alle relevanten Ergebnisse zurück.
Die Konstruktion kann beliebig oft wiederholt werden, je nach Anwendungsfall. Auch Projektionen
und weitere Abfrage-Techniken sind möglich:

 SELECT a.Benutzer FROM de.ipcon.db.core.Gruppe a WHERE NOT Ldel
 AND a.Formulare.BOTyp.Name="Beleg"
{UnionAll SELECT a FROM de.ipcon.db.core.Benutzer a WHERE NOT Ldel
 AND a.Gruppen.Name="Admins"}


Momentan sind Union und UnionAll identisch, da die Dublettenerkennung im
QueryIterator noch nicht implementiert ist.

122

Unterstützung in Solstice
Die Solstice-Oberfläche nutzt MEX, indem CBOTextQuery (über <Query type="Text"/>) bereits Teile der
Query als Variablen deklariert. Zum Beispiel:

SELECT a FROM de.ipcon.db.core.Benutzer WHERE NOT Ldel

wird umgewandelt in:

{!select=SELECT a FROM}
{!where=a WHERE}
{!constraints=NOT Ldel}
{=select} de.ipcon.db.core.Benutzer {=where} {=constraints}

Diese Variante ist funktional identisch zur ursprünglichen Query.

Ein interessanter Mechanismus besteht darin, dass die letzte Zeile der Query mit dem Tag
<template> ersetzt werden kann:

<Query type="Text">
 <template>
 {=select} de.ipcon.db.core.Benutzer {=where} {=constraints} AND Name LIKE "A%"
 </template>
</Query>

Alle Filter, Volltextsuchen und andere OQL-Schnipsel werden in der Variablen constraints
gesammelt. Dadurch kann der Union-Mechanismus verwendet werden, um Constraints in alle
Union-Teile zu übernehmen:

<template>
 {=select} de.venice.bo.Rechnung {=where} {=constraints} AND (NOT Bezahlt
OR Bezahlt = NULL)
 {UnionAll {=select} de.venice.bo.EingangsRechnung {=where} {=constraints} AND
FreigabeFiBu}
</template>

Gruppierung von Filtern
Unterschiedliche Attribute können in Subklassen variieren oder gar nicht existieren. Trotzdem
sollen sie über die grafischen Filter auswählbar sein.

Dazu können Filter gruppiert werden. Ein Filter erhält eine Gruppenkennung, z. B. group="R". Die
zugehörigen Query-Constraints werden dann in einer separaten Variablen gespeichert
(constraintsR).

123

Beispiel:

<Query type="Text">
 <template>
 {=select} de.venice.bo.Rechnung {=where} {=constraints} AND
{=constraintsAR} AND (not Bezahlt OR Bezahlt = NULL)
 {UnionAll {=select} de.venice.bo.EingangsRechnung {=where} {=constraints} AND
{=constraintsER} AND FreigabeFiBu}
 </template>
 <filter type="bool" group="AR" title="Ausgangs-Rechnung hat Skonto">
 <ifTrue>Skonto != NULL</ifTrue>
 </filter>
 <filter type="string" group="AR" title="Kunden-Nr">
 <clause>Kunde.DebitorenNr like "%{}%"</clause>
 </filter>
 <filter type="string" group="ER" title="Lieferanten-Nr">
 <clause>Lieferant.KreditorenNr like "%{}%"</clause>
 </filter>
</Query>

124

Zukünftige Erweiterungen
Geplante Features umfassen:

• Verwendung von Skalaren und Listen als Parameter für Subqueries

• Fetch-Strategien zur Optimierung des Lazy-Loading in der GUI (z. B. Prefetching von Relationen)
= Volltextsuche

Die Volltextsuche erlaubt die einfache und schnelle Suche nach gegebenen Suchbegriffen über alle
in der MyTISM-Datenbank gespeicherten Objekte.

125

Vorbereitung und Konfiguration

Volltextsuche aktivieren
Die Volltextsuche ist normalerweise deaktiviert, d.h. Sie können in Abfragen keine auf der
Volltextsuche basierenden Klauseln verwenden. Abfragen mit solchen Klauseln führen bei nicht
aktiver Volltextsuche zu einer Fehlermeldung.

Um die Volltextsuche zu aktivieren müssen Sie in der Datei mytism.ini im Abschnitt "Fulltextsearch"
das Flag "activateFts" setzen (sollte auch der entsprechende Abschnitt noch nicht existieren, fügen
Sie ihn einfach ebenfalls ein):

[Fulltextsearch]
activateFts=1

Einstellungen
Für alle Einstellungen existieren Standardwerte; im Normalfall ist also keine weitere Konfiguration
für die Volltextsuche notwendig und meist auch nicht sinnvoll. Lediglich der Parameter
max_locks_per_transaction der PostgreSQL-Instanz sollte angepasst werden, da aufgrund der
besonderen Gegebenheiten der Volltextsuche die Standardeinstellung dafür nicht ausreichend zu
sein scheint.

PostgreSQL: max_locks_per_transaction

Bei der (initialen) Indexierung für die Volltextsuche werden u.U. viele gleichzeitige und relativ
langlaufende Anfragen an die PostgreSQL-Datenbank gestellt. Aus diesem Grund kann es nötig sein,
den Parameter max_locks_per_transaction in der Datei /etc/postgresql/8.4/main/postgresql.conf
(der Pfad kann je nach benutzter Version und Konfiguration ggf. abweichen) zu erhöhen.

Im Normalfall sollte es keine Probleme machen, diesen Wert einfach auf z.B. 1024 zu setzen, was
auch für die Indexierung vollkommen ausreichend sein sollte. Nachdem der Wert in obiger
Konfigurationsdatei geändert wurde, muss die PostgreSQL-Instanz durchgestartet werden.

Betriebssystem: Mögliche Anzahl gleichzeitig offener Dateien

Je nach Betriebssystem und Konfiguration kann es sein, dass der Wert für die mögliche Anzahl
gleichzeitig offener Dateien erhöht werden muss. Ein Symptom dafür sind entsprechende
Fehlermeldungen während des Betriebs der Applikation. Da der zu setzende Wert je nach System
und Konfiguration verschieden sein kann, können wir hierzu allerdings keine allgemeingültigen
Anweisungen oder Standardwerte geben.

indexAllByDefault

Im Gegensatz zu früheren Versionen der Volltextsuche werden jetzt standardmäßig keine Entitäten
in den Index aufgenommen; nur Entitäten, die im Schema explizit mittels <fulltext

126

indexed="yes"/> markiert wurden, werden für die Volltextsuche indexiert.

Um diesen Standard zu ändern, so dass erst einmal alle (abgesehen von einer Handvoll
systeminterner) Entitäten in den Index aufgenommen werden, können Sie folgende Einstellung
verwenden:

Standardmäßig (fast) alle Entitäten indexieren:

[Fulltextsearch]
activateFts=1
indexAllByDefault=1

indexDeletedBOs

Standardmäßig werden auch als gelöscht markierte Objekte für die Volltextsuche indexiert. Wenn
Sie dies nicht möchten oder benötigen können Sie die Indexierung von gelöschten Objekten wie
folgt deaktivieren:

Gelöschte Objekte nicht indexieren:

[Fulltextsearch]
activateFts=1
indexDeletedBOs=0

spellcheck

Wenn Sie die Spellcheck/"Meinten sie vielleicht…"-Funktionalität zum Vorschlagen von alternativen
Suchwörtern nutzen wollen, müssen Sie diese explizit aktivieren:

Spellcheck/"Meinten sie vielleicht…"-Funktionalität aktivieren:

[Fulltextsearch]
activateFts=1
spellcheck=1


Um diese Funktionalität nutzen zu können muss sich die JAR-Datei lucene-
spellchecker.jar im Classpath befinden.

fetchSize

Mit dieser Einstellung kann bestimmt werden, in welchen "Packen" Objekte bei der Indexierung
aus der Datenbank geladen werden. Abfragen, die sehr lange laufen, werden irgendwann
automatisch abgebrochen; mit diesem Parameter kann verhindert werden, dass Abfragen zu viel
Zeit in Anspruch nehmen, indem die Anzahl der pro Abfrage zu ladenden Objekte limitiert wird.

127

fetchSize auf 100.000 erhöhen:

[Fulltextsearch]
activateFts=1
fetchSize=100000

Im Normalfall werden Sie diese Einstellung jedoch selten benötigen; der Standardwert 50.000 wird
normalerweise ok sein.

maxFieldLength und unlimitedFieldLength

Wenn indexierte Objekte Felder mit sehr großen/langen (Text)werten enthalten, werden von diesen
standardmäßig nur die ersten 10.000 Zeichen indexiert. In gewissen Fällen kann dies nicht
ausreichend sein, oder alternativ zu viel und unnötig sein, so dass sie diese Grenze verändern
können.

Die ersten 50.000 Zeichen von Feldinhalten indexieren:

[Fulltextsearch]
activateFts=1
maxFieldLength=50000

Um (praktisch) beliebig lange Feldinhalte zu indexieren, können sie die Einstellung
unlimitedFieldLength aktivieren:

Gesamten Feldinhalt von (praktisch) beliebiger Länge indexieren:

[Fulltextsearch]
activateFts=1
unlimitedFieldLength=1

indexPath



Es hat sich herausgestellt, dass auf manchen Systemen ein Eintrag
indexPath=niofs:///<DURCH KORREKTES PROJEKTVERZEICHNIS ERSETZEN>/index
notwendig ist, um einen Fehler ("Setting type of FS directory is a JVM level setting,
you can not set different values within the same JVM") beim Serverstart zu
vermeiden.

Diese Einstellung für die Volltextsuche betrifft das Verzeichnis, in dem die Dateien des Index
gespeichert werden. Über "indexPath=ein/pfad/im/dateisystem" können sie bestimmen, wo diese
Dateien abgelegt werden.

128

#volltextsuche.index

Ein Beispiel, unter Linux:

[Fulltextsearch]
activateFts=1
indexPath=/var/lib/mytism/ftsindex

Ein Beispiel, unter Windows:

[Fulltextsearch]
activateFts=1
indexPath=C:\Daten\MyTISM\FTS-Index

Im Normalfall werden Sie diese Einstellung jedoch selten benötigen; wenn kein Eintrag für
"indexPath" vorhanden ist, wird der Standardpfad benutzt. In diesem Fall werden die Index-
Dateien unterhalb eines Verzeichnisses namens index im Projekt-Verzeichnis der MyTISM-
Installation abgelegt, also z.B. unter /.is/index.

Interessant in diesem Zusammenhang könnte evtl. sein, dass über diesen Parameter auch noch
Einstellungen für den Dateisystemzugriff gemacht werden können, die sich evtl. auf die
Performance auswirken können. Siehe hierzu auch 4.1. File System Store.

Java 1.4 NIO zum Zugriff benutzen:

[Fulltextsearch]
activateFts=1
indexPath=niofs:///.is/index

maxThreads

Um die Leistung des Servers optimal zu nutzen, werden bei der Indexierung parallel mehrere
Abfragen abgesetzt, um die in den Suchindex aufzunehmenden Objekte zu laden.

Je nach Leistungsfähigkeit des Servers können mehr oder weniger Abfragen gleichzeitig bearbeitet
werden. Ausserdem wird die Anzahl der gleichzeitig möglichen Abfragen durch die erlaubte
Anzahl von Verbindungen zur Datenbank, etc. begrenzt. Mit dieser Einstellung kann die maximale
Anzahl der gleichzeitig für die Indexierung laufenden Threads begrenzt werden.

Eine geringe Angabe für maxThreads führt lediglich dazu, dass die ggf. vorhandenen Ressourcen des
Systems nicht optimal genutzt werden und die Indexierung länger dauern kann, als eigentlich
erforderlich. Eine zu hohe Angabe kann dagegen dazu führen, dass die Indexierung aufgrund zu
grosser Anforderungen an das System fehlschlägt, was normalerweise zur Folge hat, dass die
Indexierung wieder komplett neu gestartet werden muss.

Der Standardwert für maxThreads ist die Anzahl der initial für die Java Virtual Machine verfügbaren
Prozessoren und sollte im Normalfall ok sein. Wenn Sie wichtige Gründe dafür haben, können Sie
diesen Wert verringern oder erhöhen. Wenn Sie hier `-1' angeben, sind beliebig viele parallel
laufende Threads erlaubt; konkret heisst das, dass für jede im Schema definierte (und für die
Indexierung vorgesehene) Entity ein eigener Thread gestartet wird.

129

http://www.compass-project.org/docs/2.2.0/reference/html/core-connection.html#core-connection-file



Wenn Sie sehr viele gleichzeitige Abfragen benutzen wollen müssen Sie ggf. auch
den Wert für max_connections in der PostgreSQL-Konfiguration (s.o.) erhöhen - und
zwar mindestens auf den Wert, den Sie für maxThreads angegeben haben - da es
sonst während der Indexierung zu Fehlern kommen kann.

maxThreads auf 15 setzen:

[Fulltextsearch]
activateFts=1
maxThreads=15

directoryWrapper

Über diese Einstellung kann der Zugriff auf den Index über einen Wrapper gekapselt werden, was
ggf. Verbesserungen bei der Performance bringen kann. Siehe hierzu auch 4.6. Lucene Directory
Wrapper.

[Fulltextsearch]
activateFts=1
directoryWrapper=org.compass.core.lucene.engine.store.wrapper.AsyncMemoryMirrorDirecto
ryWrapperProvider

compassConfig

Mittels dieser Einstellung können Sie den Pfad zu einer Konfigurationsdatei angeben, mit der Sie
praktisch beliebige Einstellungen direkt zum verwendeten Compass-Suchframework durchreichen
können.

Weitere Infos dazu siehe Compass-Dokumentation.

130

http://www.compass-project.org/docs/2.2.0/reference/html/core-connection.html#core-connection-directoryWrapper
http://www.compass-project.org/docs/2.2.0/reference/html/core-connection.html#core-connection-directoryWrapper
http://www.compass-project.org/docs/2.2.0/reference/html/index.html

Der Index
Grundlage der Volltextsuche ist der sogenannte Index; grob gesagt handelt es sich dabei um eine
Struktur, die die Daten der in der MyTISM-Datenbank gespeicherten Objekte in einer Form enthält,
welche eine einfaches Auffinden nach zu eingegebenen Suchbegriffen passenden Objekten
ermöglicht.

Initiale Erstellung
Dieser Index wird normalerweise einmal erstellt und im Weiteren dann automatisch aktualisiert,
wenn Änderungen an den Objekten in der Datenbank vorgenommen werden. Ist die Volltextsuche
aktiviert und noch kein Index vorhanden, wird beim Starten der MyTISM-Instanz automatisch ein
Index erzeugt. Die Volltextsuche ist erst verfügbar, wenn der Index fertig komplett wurde.

Für die Erstellung müssen alle Objekte, die mittels der Volltextsuche gefunden werden können
sollen, geladen und ihre Daten in den Index eingespeichert werden. Je nach Grösse der MyTISM-
Datenbank und der Anzahl der dort gespeicherten Objekte sowie der Leistungsfähigkeit der Server-
Machine, auf der die MyTISM-Instanz läuft, kann dieser Vorgang von einigen Minuten bis hin zu
vielen Stunden (oder noch länger) in Anspruch nehmen.

Während dieser Zeit sind der Server und die MyTISM-Instanz aufgrund der vielen und
umfangreichen Abfragen normalerweise stark ausgelastet, was ggf. natürlich Beeinträchtigungen
für die normale Benutzung mit sich bringen kann.

Ausserdem sollte darauf geachtet werden, dass die Erstellung des Index nicht unterbrochen wird
(z.B. durch Herunterfahren der MyTISM-Instanz oder des gesamten Servers), da es wahrscheinlich
ist, dass sich bei einer Unterbrechung der Index in einem halbfertigen, nicht benutzbaren Zustand
befindet und daher die Indexerstellung später noch einmal komplett neu angestossen werden
muss.

Wie bereits oben erwähnt muss die Indexerstellung jedoch im Normalfall nur ein einziges Mal
gemacht werden, so dass es sich hierbei um eine einmalige Einschränkung handelt.

Erneute Erstellung / Re-Indexierung
Soll der Index aus irgendeinem Grund vollständig neu erstellt werden, gibt es zwei Möglichkeiten,
dass zu erreichen:

1. Anlegen einer Datei namens ".force-fts-index-rebuild" im MyTISM-Projektverzeichnis. Dies ist
die normale, bevorzugte Methode. Der Inhalt der Datei ist unwichtig, sie kann leer sein.
Die Datei wird nach der Indexerstellung automatisch gelöscht.

2. Händiges Löschen des Index-Verzeichnisses inkl. aller darin enthaltenen Unterverzeichnisse
und Dateien. Diese Methode muss ggf. angewandt werden, wenn die Indexerstellung
unterbrochen wurde (s.o.).

In beiden Fällen wird der Index von Grund auf neu erstellt, wie im vorherigen Abschnitt
beschrieben, mit allen dort erwähnten Einschränkungen für die Benutzung der Anwendung

131

währenddessen.

Verteilen des Index für synchronisierende Server
Da der Index keinerlei Instanz-spezifische Informationen enthält, kann ein einmal erstellter Index
auch für eventuell vorhandenen, synchronisierende Server verwendet werden. Dies ist natürlich
insb. bei grossen Datenbanken sinnvoll, damit die aufwändige Indexerstellung nicht mehrmals
erfolgen muss.

Das Verteilen des Index ist z.Zt. jedoch noch nicht automatisch möglich und daher muss der Index
händig auf die entsprechende Server-Machine kopiert werden. Dies geschieht einfach durch
Kopieren des gesamten Index-Verzeichnisses, inklusive aller darin enthaltenen Unterverzeichnisse
und Dateien, in das MyTISM-Projektverzeichniss (bzw. das in der Konfiguration angegeben
Verzeichnis) auf dem synchronisierenden Server.



Die MyTISM-Instanz, deren Index kopiert werden soll, sollte entweder ganz
gestoppt oder die Volltextsuche sollte nicht aktiviert sein. Ist dies nicht der Fall,
kann es sein, dass der Index gerade aktualisiert wird, was ggf. dazu führt, dass er
nach dem Kopieren nicht benutzbar ist. Auch auf dem Zielserver sollte die
Volltextsuche nicht aktiv sein, wenn die Index-Dateien dorthin kopiert werden; die
MyTISM-Instanz an sich kann aber laufen.

Um nach dem Kopieren der Index-Dateien die Volltextsuche auf dem Zielserver zur Verfügung zu
stellen, muss diese in der Konfiguration aktiviert werden und die MyTISM-Instanz auf dem
Zielserver danach neu gestartet werden.

Konfiguration für die in den Index aufzunehmenden
Daten
Im Normalfall werden alle textuellen Daten aller Objekte in der MyTISM-Datenbank für die
Volltextsuche aufbereitet und im Index eingespeichert. Als Entwickler einer MyTISM-Anwendung
können Sie die Indexierung allerdings weitergehend konfigurieren und z.B. bestimmen, dass
bestimmte Objekte oder bestimmte Daten von Objekten nicht indexiert werden sollen.

Da diese Möglichkeit jedoch nur beim Bauen einer MyTISM-Anwendung besteht und im fertigen
Produkt nicht mehr weiter konfigurierbar ist finden sich ausführliche Informationen hierzu in der
MyTISM-Entwicklerdokumentation.

132

#volltextsuche.einstellungen
#volltextsuche.einstellungen
#volltextsuche.aktivierung

Benutzung der Volltextsuche
Wenn die Volltextsuche in der MyTISM-Konfiguration aktiviert und der Index vollständig erstellt
wurde, kann die entsprechende Funktionalität genutzt werden.

Standard-Abfragen
Volltextsuche-Kriterien können in Abfragen (Queries) als MEX-Ausdrücke eingefügt werden. Die
entsprechende Syntax lautet: Fulltext [from <Entitätsname>] matches <Volltext-Suchklausel(n)>

Beispiel: Eingabe von [\{Fulltext matches Schmitt} in der Suchzeile eines Kunden-Lesezeichen
findet alle Kunden(-Objekte) die in irgendeinem ihrer (indexierten) Attribute die Zeichenkette
"Schmitt" enthalten.

Normalerweise wird über alle Attribute der Objekte gesucht; es können aber auch nur bestimmte
Attribute in die Suche einbezogen werden.

Beispiel: Eingabe von [\{Fulltext matches Name:Schmitt} in der Suchzeile eines Kunden-
Lesezeichen findet alle Kunden(-Objekte) die in ihrem Attribut "Name" die Zeichenkette
"Schmitt" enthalten.

Die Namen der Attribute entsprechen dabei genau den Namen, die im MyTISM-Schema angegeben
sind; Gross- und Kleinschreibung sind dabei zu beachten.

Weitere Angaben zur Abfrage-Syntax finden sich auch noch in der Compass-Dokumentation.

Einschränkungen der Entität
FIXME Im Normalfall keine Angabe nötig, Default ist Entität der Abfrage.

133

#mex
http://www.compass-project.org/docs/2.2.0/reference/html/core-workingwithobjects.html#Query%20String%20Syntax

Grooql (Groovy Object Query
Language)
Eine alternative Möglichkeit, Objektmengen abzufragen. Hat Ähnlichkeiten/Überschneidungen mit
OQL und BOMasken. Besteht aus Filterskripten, in einer eingeschränkten Groovy-Version
geschrieben.

Im Moment fast nur direkt aus Programmcode heraus zu benutzen, noch nicht unterstützt z.B. in
Lesezeichen (ist aber geplant). Außerdem via GrooqlBOMaske.

Paket de.ipcon.db.grooql, "Hauptklasse" GrooqlFilter; Javadoc dort:

 * {@code GrooqlFilter} allow to query {@code BOs} that match given
 * criteria from the DB and also check if given {@code BOs} match these
 * criteria, both accomplished using only one single criteria definition.
 * <p>
 * {@code GrooqlFilter} could thus be seen as a combination of OQL queries
 * and {@code BOMasken}.
 * <p>
 * The criteria definition is given as a script in a subset of the Groovy
 * language. The script is used directly to check if given {@code BOs}
 * match these criteria using the {@code fits()} method. For querying
 * matching {@code BOs} from the DB the script is automatically transformed
 * into an OQL query which retrieves a superset of the matching
 * {@code BOs} which are then post-filtered with the script.
 * <p>
 * All attributes of the {@code BO} that is currently checked are available
 * as variables in the script with their simple name; for example if a filter
 * was defined for the class {@code Benutzer} {@code Name},
 * {@code Beschreibung}, {@code AnmeldungVerweigern} etc. would be
 * available as variables in the script under the exact above names.

134

https://groovy-lang.org/

Sprachumfang
Unterstützt werden z.Zt.:

• Logische Verknüpfungen: && (und), || (oder), ! (nicht)

• Operatoren für Skalare: ==, !=, <, >, ⇐, >=

• Methoden für Zeichenketten: .startsWith(‘foo’), .endsWith(‘foo’), .contains(‘foo’),
matchesSimple('bla*'), .lower(), .upper(), .trim()

• Arithmetik/Zahlen: +, -, *, /, % (Modulo)

• Methoden für Datums- und Zeitwerte:

◦ Vergleich: .after(someDate), .before(someDate)

◦ Extrahieren von Datums-“Teilen”: .day, .month, .year bzw. alternativ .getDay(), .getMonth(),
.getYear()

◦ Genauigkeit/Granularität vergröbern: .thatDay() (setzt h/min/sec auf 0), .thatMonth() (setzt
d/h/min/sec auf 0), .thatWeek() (setzt h/min/sec auf 0 und Tag auf Anfangstag (Montag) der
entsprechenden Woche), .thatMonth() (setzt d auf 1, h/min/sec auf 0), .thatYear() (setzt M/d
auf 1, h/min/sec auf 0)

◦ Zukunft: .addDay(1), .addMonth(-1), .addYear(3)

◦ Vergangenheit: .subDay(2), .subMonth(-3), .subYear(1)

• BOs:

◦ Zugriff auf Attributketten.

◦ Id in einer gegebenen Liste: .idInList(<id-Liste>)

• Methoden für Maps (Long → Objekte, insb. MyTISM-BO-Relationen-Attribute):
.containsId(<id>), .containsAllIds(<ids>)

Kommentare - sowohl mit // als auch /* … */ - werden ebenfalls unterstützt.

NICHT unterstützt werden (nur Beispiele, Liste ist keineswegs vollständig):

• Aufrufe von Methoden, außer den oben genannten

• print/println oder Logausgaben

• instanceof <Interface> (Würde mittlerweile prinzipiell gehen, müsste aber nachgebaut werden)

• import

• …

135

Beispiele für Filterskripte
Vorraussetzung: GrooqlFilter, der Objekte von Entität (GrooqlFilter.Entity) "Dokument" sucht; diese
hat Attribute "Name" (String), "ErstellungsDatum" (Date), "Summe1" (Integer), "Summe2" (Integer).
Beispiele für GrooqlFilter.FilterSource:

Alle Dokumente mit bestimmtem Namen:

Name = "Bilanz 1"

Alle Dokumente mit Namen der mit "Bilanz" beginnt:

Name.startsWith("Bilanz 1")

Alle Dokumente aus dem Jahr 2011:

ErstellungsDatum.year = 2011

oder

ErstellungsDatum.getYear() = 2011

Alle Dokumente neuer als 2011:

ErstellungsDatum.year > 2011

oder

ErstellungsDatum.getYear() > 2011

Alle Bilanzen von 2011:

Name.startsWith("Bilanz") && ErstellungsDatum.getYear() = 2011

Alle Dokumente ohne Namen:

Name == null || Name.trim() = ""

Alle Dokumente mit Summe1 + Summe2 > 1000:

Summe1 + Summe2 > 1000

136

Einstellungen-Variablen
Einstellungen-Variablen dienen dazu, Werte für bestimmte Einstellungen zu setzen, welche dann
z.B. in Skripten abgefragt und benutzt werden können. Diese Werte können global gültig oder
gruppen- oder benutzerabhängig sein.


Geänderte oder neue Einstellungen-Variablen werden erst nach einer erneuten
Anmeldung an der GUI wirksam.

137

Definition der vorhandenen/verfügbaren
Variablen
Normalerweise werden Einstellungen-Variablen vom Administrator oder von Entwicklern, je nach
dem Bedarf der spezifischen MyTISM-Anwendung, definiert. Eine Variable(ndefinition) hat
folgende Eigenschaften:

Name

Pflichtfeld - Der Name oder Titel einer Variable sollte diese kurz und prägnant benennen. Der
Name kann frei gewählt werden; ein wirkliches einheitliches Schema für die Benamsung
existiert (bisher) noch nicht.

Beschreibung

Optional - Die Beschreibung kann einen längeren Kommentar bzw. eine längere Beschreibung
der Variable beinhalten und ggf. erklären wo bzw. wofür sie benutzt wird.

Standardwert

Optional - Dies ist der Wert, den die Variable normalerweise hat und der bei der Abfrage z.B. in
Skripten zurückgeliefert wird, wenn kein spezieller Wert für bestimmte Benutzer oder Gruppen
gesetzt wurde (s.u.). Variablenwerte hier sind immer Zeichenketten, eine weiter Typisierung
(z.B. für Nummern oder Wahrheitswerte) gibt es nicht. Wenn kein Wert gesetzt wird, ist der
Standardwert einfach null.

Ueberschreibbar

Optional - Wenn dieses Flag gesetzt ist, können für einzelne Benutzer oder Gruppen vom
Standardwert abweichende Werte für diese Variable definiert werden (oder genauer gesagt:
Wenn solche Werte definiert wurden, werden sie auch berücksichtigt; s.u.). Wenn das Flag nicht
gesetzt ist, gilt für alle Benutzer oder Gruppen immer nur der Standardwert der Variable.

138

Abfrage von Einstellungen-Variablen in
Skripten
Variablenwerte können wie folgt abgefragt werden (Beispiel aus dem vorgebauten JahrMonatTag-
Filter-Codebaustein):

def val = ctx.getSession().getUser().getEVWert("jahrMonatTagFilter.Monat")

Hat man die Objektinstanz des gewünschten Benutzers in der Hand (hier ist dies der aktuelle, mit
Hilfe des ClientContext ermittelte Benutzer), kann man mittels der Methode getEVWert() den Wert
einer beliebigen existierenden Einstellungsvariablen abfragen, indem deren Name der Methode
übergeben wird.

139

Setzen von abweichenden Werten für
Benutzer oder Gruppen
Wenn für bestimmte Benutzer oder Gruppen vom Standardwert abweichende, spezielle Werte für
eine Variable gesetzt werden sollen, geschieht das durch Anlegen von EinstellungenVarWertBenutzer
- oder EinstellungenVarWertGruppe-Objekten.

In diesen Objekten gibt man an, für welche Variable der Wert "überschrieben" werden soll, für
welchen Benutzer oder Gruppe der abweichende Wert gelten soll und natürlich den Wert selbst.

Die Auswertung bzw. Bestimmung welcher Wert für einen spezifischen Benutzer letztendlich
zurückgeliefert wird erfolgt so:

1. Wenn eine Variable mit dem gewünschten Namen nicht existiert, wird null zurückgegeben.

2. Wenn die Variable existiert und Ueberschreibbar NBSP nicht gesetzt ist, wird immer der
Standardwert der Variable zurückgegeben.

3. Wenn Ueberschreibbar gesetzt ist und eine EinstellungenVarWertBenutzer-Instanz für den
Benutzer und die Variable existiert, wird der dort angegebene Wert zurückgegeben.

4. Wenn Ueberschreibbar gesetzt ist, keine passende EinstellungenVarWertBenutzer-Instanz
existiert, aber eine EinstellungenVarWertGruppe-Instanz für die Variable und eine Gruppe, in der
der Benutzer Mitglied ist, existiert, wird der dort angegebene Wert zurückgegeben. Wenn
mehrere passende Instanzen für die Variable und unterschiedliche Gruppen, in denen der
Benutzer Mitglied ist, existieren, so wird der Wert zurückgegeben, der für die Gruppe mit der
kleinsten Id definiert wurde.

140

Lesezeichen und Anzeige in Benutzer- und
Gruppen-Formularen
Im Ordner der Gruppe "Benutzer" gibt es ein vorgebautes Lesezeichen, in dem alle für den
angemeldeten Benutzer geltende EinstellungenVarWerte (sowohl für Benutzer als auch Gruppe)
angezeigt werden; allerdings nur solche, für deren zugehörige Variable das Flag Ueberschreibbar
gesetzt ist!

In den vorgebauten Formularen für Benutzer und Gruppe gibt es ebenfalls einen Reiter Variablen; in
der dortigen Tabelle werden alle für den jeweiligen Benutzer bzw. die jeweilige Gruppe definierten
EinstellungenVarWertBenutzer bzw. EinstellungenVarWertGruppe angezeigt.

141

Scripted Attributes
Bei den Scripted Attributes handelt es sich um Virtual Properties, die zur Laufzeit (KEIN Server-
Restart oder Client-Neuanmeldung nötig!) an ein BO hinzugefügt werden können - sei es in einem
Lesezeichen, einem Formular oder im Report. Als Programmiersprache der Scripted Attributes
kommt Groovy zum Einsatz, welches nahezu 100% kompatibel zu Java ist.

Der Tag heisst virtualProperty und kennt folgende Parameter:

Table 4. virtualProperty-Parameter

Param
eter

Beschreibung Defaul
t

Pflichtfeld

entity Name der Entität, an die das virtuelle Attribut
"angebaut" werden soll

- ja

name Wie das zu bauende virtuelle Attribut heissen soll - ja

type Von welchem Datentyp das virtuelle Attribut ist;
mögliche Typen: String, Integer, Long, Decimal, Date
sowie MyTISM-Objekte in Kombination mit einer
relation-Angabe (z.B. BO, Artikel, Rechnung, …)

"String
"

ja, sofern abweichend
vom Default

relatio
n

Handelt es sich um eine Relation des Typs n-1 oder 1-n - ja, sofern es sich beim
Typ um ein MyTISM-
Objekt handelt

readon
ly

Ist das virtuelle Attribut beschreibbar? Wird eine setter-
Methode explizit definiert impliziert dies ein
readonly="true"

"false" siehe Beschreibung

cached Bestimmt die Cachingstrategie des Ergebnisses. Siehe
Abschnitt "cached"

Deakti
viert

nein

default Ein Groovy-Ausdruck, der den Standardwert definiert;
nur sinnvoll für non-readonly vattrs; siehe Abschnitt
"default"

- nein

Außerdem kann man ein Unterelement namens init mit einem Groovy-Skript verwenden, das
beim erstmaligen Zugriff (get, set, add, remove) auf diese Virtual Property einer Objektinstanz
ausgeführt wird; siehe Abschnitt "init"

142

http://www.groovy-lang.org/documentation.html#gettingstarted

Beispiele für Virtual Properties
Virtual Property in einem Lesezeichen:

<Table entity="Rechnung">
 <virtualProperty entity="Rechnung" name="PostenAnzahl">
 <get>bo.Posten.size()</get>
 </virtualProperty>
 <Query type="Text"/>
 <View>
 <Column property="BelegNr" sort="DESC" sortLevel="2"/>
 <Column property="Wartend"/>
 <Column property="Adressat.AbstraktePerson" title="Kunde"/>
 <Column property="Belegdatum"/>
 <Column property="GesamtSumme"/>
 <Column property="Waehrung"/>
 <Column property="PostenAnzahl"/>
 </View>
</Table>

Virtual Properties in einem Formular:

143

<View>
 <virtualProperty entity="BX" name="Scanzeile">
 <set>
 if (value == null) {
 return
 }
 command = value.substring(0, 1)
 param = value.substring(1)
 switch (command.toUpperCase()) {
 case 'M':
 println 'M-Nr'
 bo.LogInfo = "Kommando $command"
 // hier ggfs. Code zur Verarbeitung der M-Nr
 break
 case 'S':
 println 'S-Nr'
 bo.LogInfo = "Kommando $command"
 // hier ggfs. Code zur Verarbeitung der S-Nr
 break
 default:
 bo.LogInfo = "Error: unbekanntes Kommando \"$command\""
 }
 </set>
 </virtualProperty>
 <virtualProperty entity="BX" name="LogInfo" readonly="false"/>
 <!-- Formular-Definition -->
 <Element>
 <Text property="ScanZeile" align="CENTER" fontStyle="bold">
 <Action cmd="beep" accKey="ENTER" shortDescription="keep focus after enter key
here">
 <onAction>ftx.sync()</onAction>
 </Action>
 </Text>
 </Element>
 <Element label="LogInfo">
 <Text property="LogInfo"/>
 </Element>
</View>

Quellcode 2:

<element>
 <einElement>inhalt</einElement>
 <nochEinElement/>
 <!-- War: <element attribut="zwei"/> -->
 <Include name="codebaustein" attrWert="zwei"/>
 <wiederumEinElement attr="wert"/>
</element>

144



Nicht alle Bereiche eines Strukturelements können auf Virtual Properties
zugreifen. Beispielsweise ist dies innerhalb einer <enabledOn> - Bedingung einer
Action nicht möglich. FIXME Complete and/or correct the list of sections where
virtual properties can/cannot be accessed.

145

Caching
Manche "virtualProperties" sind so aufwändig zu berechnen, dass es sich lohnt das Ergebnis zu
cachen. Ein einfaches Caching über transientProperties (FIXME Erklärung?) existiert in vielen
Projekten, ist üblicherweise aber nicht synchronisiert. Dadurch werden teure Berechnungen und
Queries parallel mehrfach ausgeführt, was sowohl hohen Netzwerktraffic als auch Serverlast
verursachen kann. Der dazu nötige Boilerplate-Code verringert zudem die Wartbarkeit.

Daher gibt es eine Standardmöglichkeit, Werte solcher Properties zur mehrfachen Verwendung zu
speichern. Diese wird bei der Definition mit dem XML-Attribut cached aktiviert.

Mögliche Cachemodi
false oder NONE

Der Wert wird nicht im Cache gespeichert, der Getter wird bei jedem Aufruf erneut berechnet.
Entspricht dem Default-Verhalten, falls das cached Attribute weggelassen wurde.

true oder VERSIONED

Der zurückgegebene Wert ist nur für die aktuelle BO-Version gültig. Wird das BO verändert,
dann wird der Getter erneut aufgerufen und ein aktualisierter Wert berechnet. Für alle
Strukturelemente empfehlenswert.

SIMPLE

Der zurückgebene Wert ist dauerhaft gültig und wird (praktisch gesehen) über die Lebensdauer
des BOs nicht neu berechnet. Er wird erst verworfen, wenn der komplette Cache des "scripted
Attribute" geleert wird, was z.B. durch Leeren des CachingBOLoader-Caches geschieht.

Dieser Modus sollte nur verwendet werden, wenn der berechnete Wert garantiert unabhängig
vom aktuellen Zustand des BOs ist.

Neuberechnung bei true oder VERSIONED

Der Cache für VERSIONED-Attribute wird invalidiert, wenn am BO ein bumpVersion() aufgerufen wird.
Änderungen an anderen, z.B. vom BO referenzierten, BOs sind da egal.

Das passiert in den folgenden Fällen automatisch:

• Ein persistentes Attribut am BO wird geändert

• FIXME add/remove vermutlich auch, aber ist nicht ganz sicher

• Ein "scriptedAttribut" am BO wird geändert. Das triggert zum einen den
TransactionMessageQueue und macht auch ein bumpVersion(), selbst wenn eigentlich nichts am BO
selbst geändert wird.

• BO#bumpVersion = invalidiere VERSIONED-Caches

• BO#notifyMessageBus = invalidiere VERSIONED-Caches und stelle sicher das sich Tabellen etc.
aktualisieren

146

cached-Angabe direkt im Schema
Es ist auch möglich, direkt bei der Definition eines Attributes im Schema cached anzugeben.

Die Schema-Variante speichert den Cache als "transientProperty" am BO und macht ein
Synchronize beim Lesen und Schreiben. Die "scriptedAttribute" Variante (s.o.) speichert das am
ScriptedAttribute intern, benutzt Futures und ist insgesamt Multi-Threading-performanter.

Bei beschreibbaren Schema-vattrs muss man das Event in der MessageQueue selbst erzeugen.
Dafür aktualisieren sich dann Tabellen auch korrekt.

Positiv-Beispiel

 Beispiel:

<virtualProperty entity="BO" name="TeureSumme" type="Long" cached="true"> ①
 <get>return bo.BOLoader.queryBO("sum(Id) from BO a where not Ldel").find()</get> ②
</virtualProperty>
<virtualProperty entity="BO" name="TeurerSummeNull" type="Boolean"> ③
 <get>return bo.TeureSumme == null</get>
</virtualProperty>

① cached="true" aktiviert das automatische Caching im Modus 'VERSIONED'.

② Sollte noch kein BO in der Datenbank existieren, dann ist die Summe 0 und find() gibt null
zurück. Der Getter enthält nur die reine Berechnung des Wertes.

③ Eine einfach zu berechnende Property hängt vom Ergebnis der teuren Berechnung ab. Diese
muss nicht unbedingt als cached markiert sein.

Negativ-Beispiel
Die Semantik des cached-Flags SIMPLE entspricht in etwa der folgenden Implementierung, mit
einigen wichtigen Vorteilen:

1. Die Synchronisation kann viel enger gefasst werden, wodurch verschiedene virtualProperties
des gleichen BOs parallel berechnet werden können.

2. null-Werte werden korrekt im Cache gespeichert.

3. Standardmässige Versionierung, d.h. der Wert wird nach Benutzereingaben automatisch
aktualisiert.

 Don’t do this, just for reference!

147

<virtualProperty entity="BO" name="TeureSumme" type="Long">
 <get><![CDATA[
 def cacheValue = bo._TeureSumme ①
 if (cacheValue <> null) {
 return cacheValue
 }
 synchronized (bo) {
 cacheValue = bo._TeureSumme ②
 if (cacheValue <> null) {
 return cacheValue
 }
 cacheValue = bo.BOLoader.queryBO("sum(Id) from BO a where not Ldel").find() ③
 bo._TeureSumme = cacheValue ④
 }
 return cacheValue
]]></get>
</virtualProperty>

① Prüfe auf existierenden Cache, entspricht einem synchronisiertem Zugriff auf die Transient
Property Map des BOs.

② Erneuter Check nötig, evtl. wurde dieser Thread am synchronized aufgehalten während ein
anderer das Ergebnis bereits berechnet hat.

③ Die eigentliche Berechnung…

④ bzw. bo.setTransientProperty('_TeureSumme', cacheValue, true) für Versionierung.

148

Standard-Werte
Schreibbare Scripted Attributes können einen Standardwert zugewiesen bekommen. Der
Standardwert wird über einen Groovy-Ausdruck im Attribut default des virtualProperty-Elements
angegeben.

<virtualProperty entity="BO" name="Name" readonly="false" default="'Grumpy Cat'"/> ①

<virtualProperty entity="BO"
 name="AnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything" type="Long"
 readonly="false" default="42"/> ②

<virtualProperty entity="BO" name="Einheit" readonly="false" type="Einheit"
relation="n-1"
 default="Einheit.forMeter(bo.BOLoader)"/> ③

① Der initiale Wert des ScriptedAttributes vom Typ String wird auf den Wert "Grumpy Cat"
gesetzt.

② Der initiale Wert des ScriptedAttributes vom Typ Long wird auf den Wert 42 gesetzt.

③ Als initialer Wert für das ScriptedAttribute vom Typ Einheit wird das Initialdaten-Objekt, das
"Meter" repräsentiert, via BOLoader des BOs besorgt.

149

Initialisierungsskript
Scripted Attributes können ein init-Unterelement haben, das ein Groovy-Skript enthält, welches
beim erstmaligen Zugriff (get, set, add, remove) auf diese Virtual Property einer Objektinstanz
ausgeführt wird. Typischerweise kann ein solches Skript Datenstrukturen oder Caches
initialisieren. Das Skript kann theoretisch auch den Wert einer Virtual Property setzen und damit
ggfs. den Wert, der über den Ausdruck im default-Attribut gesetzt wurde, wieder überschreiben;
dies wird jedoch als Warning im Client-Log vermerkt.

<virtualProperty entity="BO" name="Name" readonly="false">
 <init>bo.Name = 'Happy Dog'</init> ①
</virtualProperty>

<virtualProperty entity="BO"
 name="AnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything" type="Long"
 readonly="false">
 <init> ②
 bo.initNutrimaticDrinksDispenser()
 bo.resetInfiniteImprobabilityDrive()
 bo.applyThinkingCap()
 bo.assureTowel()
 </init>
</virtualProperty>

① Der initiale Wert des ScriptedAttributes vom Typ String wird per init-Skript auf den Wert
"Happy Dog" gesetzt.

② Essentielle Initialisierungsroutinen zur Berechnung des Werts des ScriptedAttributes vom Typ
Long werden durchgeführt. = Troubleshooting - Probleme und (hoffentlich) deren Lösungen

FIXME: wie man Fehler meldet (Weg, Inhalt (was wir wissen muessen), …

150

Probleme beim Start des Clients
de.ipcon.tools.IRuntimeException: Vergroesserung des Pools fehlgeschlagen, IOException
aufgetreten: Malformed reply from SOCKS server

Beim SOCKS Server handelt es sich um einen Proxy-Server. Stellen Sie sicher, dass im JavaWebstart
die Option "Direktverbindung" eingestellt ist anstelle einen Proxy-Server zu verwenden.
Desweiteren öffnen Sie "/Start/Einstellungen/Systemsteuerung/Internetoptionen" und wechseln dort
auf den Reiter "Verbindungen". Im unteren Drittel befinden sich die "LAN-Einstellungen". Dort
deaktivieren Sie bitte ALLE Checkboxen und schliessen den Dialog mit OK.

151

FAQ - Immer wiederkehrende
Fragen und deren Beantwortung

152

Benutzer-Passwort ändern / Change user
password / Changer mot de passe

Benutzer-Passwort ändern
Nach der Anmeldung finden Sie im linken Menü-Baum ganz oben einen Eintrag mit Ihrem Login-
Namen. Wenn Sie auf diesen Eintrag mit der rechten Maustaste klicken, öffnet sich ein Kontext-
Menü, aus dem Sie den Eintrag Information auswählen. Es öffnet sich ein Formular, in dem Sie ein
neues Passwort setzen können.

Change user password
After the login you will find in menu tree (left side) at the top an entry with your login name. Right-
clicking on this entry will open a context menu where you can choose the entry Information. A form
will open where you can change your password.

Changer mot de passe
Après la connexion vous trouvez dans la navigation (côté gauche) en haut l’entrée de votre nom
d’utilisateur. Faites un clique droit sur votre nom d’utilisateur pour ouvrir un menu où vous
choississez l’entrée Informations. Un formulaire vous permet de changer votre mot de passe.

153

JavaWebstart-Cache löschen unter Windows
Geben Sie unter START / AUSFÜHREN folgenden Befehl ein und drücken RETURN

javaws -viewer

Es öffnet sich das “Java Control Panel” und evtl. sogar direkt schon “Java Cache Viewer”

Wenn sich der Cache Viewer nicht öffnet, dann klicken Sie im Control Panel bei “Temporäre
Internetdateien” auf “Anzeigen”

Markieren Sie im “Java Cache Viewer” die jeweilige Anwendung (einmal klicken) und löschen Sie
diese dann durch Anklicken des grossen roten “X” in der Menüzeile des Cache Viewers.

Schliessen Sie den "Java Cache Viewer" und das "Java Control Panel" und versuchen Sie sich erneut
anzumelden, indem Sie die Anwendung erneut herunterladen.

154

Anzeige der Symbole auf SVGs umstellen
Um die Verwendung von Symbolen in Vektorgraphik zu aktivieren, erstellen Sie - falls noch nicht
vorhanden - eine Variable vom Typ Boolean mit dem Namen theme.useSVGIcons und erstellen Sie
anschließend eine EinstellungenVariable für diese Variable mit dem Wert true. Anschließend
müssen Sie den Solstice-Client neu starten.

155

Der Windows-Task-Manager zeigt mehr
verwendeten Speicher an als der About-
Dialog von MyTISM
Wenn ein Java-Prozess gestartet wird, fordert die JVM die Speichermenge an, die in der Option
-Xmx in den an den Java-Prozess gelieferten VM args angegeben ist. Dieser Gesamtspeicher wird
von Windows für die JVM "reserviert", aber bis er verwendet wird, wird er zunächst nicht
zugewiesen. Dies ist die "Memory (Private Working Set)"-Nutzung, die man im Task-Manager (unter
Details) sieht.

Die Diskrepanz kommt daher, dass unser Report im About-Dialog nur die Heap-Usage anzeigt, d.h.
die "Used"-Angabe stellt eine Annäherung an die Gesamtmenge an Speicher dar, die derzeit für
Objekte verwendet wird, gemessen in Mebibytes. Das wird ausgerechnet aus der Differenz aus dem
"total" memory (= Die Gesamtmenge an Speicher, die derzeit für aktuelle und zukünftige Objekte
verfügbar ist) und dem "free" memory (=eine Annäherung an die derzeit für zukünftige
zugewiesene Objekte verfügbare Gesamtmenge an Speicher).

Der Speicher der JVM teilt sich in der Regel auf diese Bereiche auf:

• Heap-Speicher, der für Java-Objekte vorgesehen ist (hier würde sich i.d.R. auch ein memory-
leak zeigen).

• Nicht-Heap-Speicher, d.h. der Ort, an dem Java geladene Klassen und Metadaten sowie den JVM-
Code speichert.

• Nativer Speicher, d.h. Speicher, der für dll’s und nativen Java-Code (sehr niedrige Ebene)
reserviert ist.


Der Windows Task-Manager zeigt dies nicht an. Er zeigt nur den gesamten von der
Anwendung verwendeten Speicher an (Heap + nicht-Heap + nativer Teil).

Normalerweise ist den Prozessen, die mehr Speicher vom Betriebssystem anforderten, der Speicher
auch dann noch zugewiesen, wenn die eigentliche Anwendung den Speicher schon wieder
"freigegegen" hat. Die entsprechenden Speicherseiten sind von Windows als Teil des Adressraums
des Prozesses abgebildet worden. Es obliegt Windows, die Working Set Size wieder
zurückzufahren, nachdem Java den Speicher wieder freigegeben hat, was es allerdings nicht
unbedingt "sofort" tut. Im Task-Manager nimmt der Speicher also nicht unbedingt immer ab, aber
das deutet dann nicht zwingend auf ein Speicherleck in der Anwendung hin.


Allerdings könnte es helfen, die Applikation kurz zu minimieren, dann passt
Windows die Working Set Size normalerweise nochmal an den tatsächlichen
Bedarf an. (Quelle)

Fazit: die Speichernutzung, die der Task-Manager zeigt spiegelt nicht unbedingt das wider, was das
Programm aktuell verwendet. Maßgeblich ist eher das, was im Dialog in MyTISM zu sehen ist an
(Heap-)Speicher. Das sollte irgendwann bzw. beim Schließen aller Fenster und Löschen der Caches
abnehmen und wenn nicht, deutet das dann wirklich auf ein Speicherleck hin.

156

https://getgreenshot.org/2010/07/24/a-few-words-on-memory-usage-or-working-set-vs-private-working-set/



Der TaskManager ist allgemein - gelinde gesagt - nicht so toll. Wir empfehlen daher
die Verwendung des Process Explorers aus der Microsoft Sysinternals Suite, der
i.A. bessere Ergebnisse zeigt (wenn auch in diesem Fall nicht, da der Heap auch
dort nicht getrennt ausgewiesen wird). = MyTISM Kurzanleitung - Ein Datenbank-
und Anwendungs-Framework :Email: <support@oashi.com> :Date: 2025-07-09 :toc:
:icons: font

157

https://www.heise.de/download/product/process-explorer-21841
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
mailto:support@oashi.com

Willkommen bei MyTISM!
MyTISM ist ein leistungsstarkes Programm, das Ihnen hilft, Informationen zu verwalten und zu
bearbeiten. Stellen Sie es sich wie ein digitales Büro vor, in dem alles ordentlich sortiert und immer
griffbereit ist.

Der Name „MyTISM“ steht für „My Tool Is My…“. Was dieses Werkzeug ist, entscheiden Sie! Es
könnte Ihre Lösung, Ihr Schlüssel zum Erfolg oder Ihre Inspiration sein.

Warum MyTISM?
MyTISM wurde entwickelt, um Ihnen die Arbeit zu erleichtern. Es bietet eine klare, intuitive
Benutzeroberfläche und eine Vielzahl nützlicher Funktionen zur effizienten Verwaltung Ihrer
Daten. Das System basiert auf einer 3-Tier-Architektur, die die Benutzeroberfläche, die
Anwendungslogik und die Datenspeicherung voneinander trennt. Dieses Design macht die
Anwendung stabil, flexibel und einfach zu warten.

Der Solstice-Client: Ihr Arbeitsbereich
Wenn Sie MyTISM starten, sehen Sie als erstes den Solstice-Client. Dies ist Ihr Hauptfenster – die
Kommandozentrale, von der aus Sie alles steuern können.

Auf der linken Seite finden Sie den Navigationsbaum. Dies ist Ihr wichtigstes Werkzeug, um sich
im System zurechtzufinden. Er organisiert alle verfügbaren Funktionen und Daten in Ordnern.

Die rechte Seite des Fensters ist der Hauptarbeitsbereich. Hier werden verschiedene Elemente wie
Datentabellen (Lesezeichen) und Detailansichten (Formulare) angezeigt. Oben bieten eine
Menüleiste und eine Symbolleiste Zugriff auf allgemeine Befehle und Aktionen.

Kernfunktionen für Ihre tägliche Arbeit
MyTISM bietet mehrere Schlüsselkomponenten für die Interaktion mit Ihren Daten. Die Elemente,
mit denen Sie arbeiten, wie Kunden, Projekte oder Rechnungen, werden als Geschäftsobjekte (BOs)
bezeichnet.

 Lesezeichen Lesezeichen sind Ihr wichtigstes Werkzeug zur Anzeige von Datenlisten. Stellen Sie
sie sich als leistungsstarke, gespeicherte Suchen vor, die Datensätze in einer Tabelle anzeigen. Von
einem Lesezeichen aus können Sie:

• Einen Eintrag per Doppelklick öffnen, um dessen detailliertes Formular anzuzeigen.

• Die Daten durch Klicken auf eine Spaltenüberschrift sortieren.

• Ein zweiter Klick kehrt die Reihenfolge um.

• Die Suchleiste und interaktive Filter verwenden, um bestimmte Einträge schnell zu finden.

• Die ausgewählten Daten zur Verwendung in anderen Programmen in eine CSV- oder XLS-Datei
exportieren.

158

 Formulare Formulare dienen zur Anzeige und Bearbeitung der Details eines einzelnen
Datensatzes (eines BOs). Wenn Sie einen Eintrag aus einem Lesezeichen öffnen, erscheint er in
einem Formular. Hier können Sie alle Informationen einsehen, Änderungen vornehmen und diese
speichern.

 Schablonen Schablonen sind „Blaupausen“ für die Erstellung neuer Datensätze. Wenn Sie einen
neuen Eintrag hinzufügen müssen, wie ein neues Projekt oder ein Support-Ticket, verwenden Sie
eine Schablone. Dies stellt sicher, dass alle notwendigen Informationen konsistent erfasst werden.

 Reports (Berichte) Reports ermöglichen es Ihnen, Ihre Daten in einem druckbaren Format
darzustellen. Dies ist nützlich für die Erstellung von Etiketten oder offiziellen Dokumenten wie
Rechnungen, Projektzusammenfassungen oder Kundenlisten.

 Codebausteine Dies sind kleine, wiederverwendbare Teile eines Formulars, die von
Entwicklern verwendet werden. Sie helfen dabei, komplexe Formulare effizient zu erstellen und
ein einheitliches Erscheinungsbild in der gesamten Anwendung zu gewährleisten.

Ein typischer Arbeitsablauf
MyTISM ist intuitiv gestaltet. Hier ist ein schrittweises Beispiel für eine häufige Aufgabe:

1. Finden Sie Ihre Daten: Verwenden Sie den Navigationsbaum auf der linken Seite, um das
passende Lesezeichen zu finden. Sie könnten zum Beispiel zu Projekte → Alle aktiven
Projekte navigieren.

2. Sehen Sie sich die Liste an: Doppelklicken Sie auf das Lesezeichen, um eine Tabelle mit allen
aktiven Projekten zu öffnen.

3. Finden Sie einen bestimmten Eintrag: Verwenden Sie die Suchleiste oder klicken Sie auf die
Spaltenüberschriften, um die Liste zu sortieren und das gewünschte Projekt zu finden.

4. Öffnen Sie die Details: Doppelklicken Sie auf die entsprechende Projektzeile. Dadurch wird das
Formular des Projekts geöffnet.

5. Anzeigen oder Bearbeiten: Im Formular können Sie alle Details einsehen. Wenn Sie die
erforderlichen Berechtigungen haben, können Sie die Informationen bearbeiten und auf die
Schaltfläche „Speichern“ klicken.

6. Erstellen Sie einen neuen Eintrag: Um ein neues Projekt zu erstellen, suchen Sie die
Schablone „Neues Projekt“ im Navigationsbaum und doppelklicken Sie darauf. Ein leeres
Formular wird geöffnet, das Sie ausfüllen können.

Weitere nützliche Funktionen
• Massenänderungen: Sie können mehrere Einträge in einem Lesezeichen auswählen und alle

auf einmal ändern.

• Volltextsuche: Eine leistungsstarke Suchfunktion ist in Lesezeichen verfügbar. Sie ermöglicht
es Ihnen, Informationen über alle Objekte des dort angezeigten Typs zu finden.

• Benachrichtigungen & Alarme: Das System kann Sie automatisch über wichtige Ereignisse
informieren oder Sie warnen, wenn ein Termin näher rückt.

159

Hilfe und Support
Wenn Sie Fragen haben oder Hilfe benötigen, wenden Sie sich bitte an Ihren Systemadministrator
oder den OAshi-Support.

Tipps für den Einstieg
• Nehmen Sie sich etwas Zeit, um sich mit der Solstice-Oberfläche vertraut zu machen.

• Klicken Sie sich durch die Menüs und probieren Sie die verschiedenen Funktionen aus.

• Beginnen Sie damit, Lesezeichen und Schablonen zu erkunden, um ein Gefühl für die
Arbeitsweise von MyTISM zu bekommen.

• Nutzen Sie das Kontextmenü (Rechtsklick) bei Einträgen im Navigationsbaum und in
Lesezeichen, um verfügbare Aktionen zu entdecken.

• Zögern Sie nicht, die verfügbaren Hilfe- und Support-Ressourcen zu nutzen.

Wir wünschen Ihnen viel Erfolg mit MyTISM! = MyTISM Quick Guide - A Database and
Application Framework :Email: <support@oashi.com> :Date: 2025-07-09 :toc: :icons: font

160

mailto:support@oashi.com

Welcome to MyTISM!
MyTISM is a powerful program designed to help you manage and process information. Think of it
as your digital office, where everything is neatly organized and always within reach.

The name “MyTISM“ stands for “My Tool Is My…“. What that tool is, is up to you! It could be your
Solution, your Key to success, or your Inspiration.

Why MyTISM?
MyTISM was developed to make your work easier. It provides a clear, intuitive interface and a host
of useful features to help you manage your data efficiently. The system is built on a 3-tier
architecture, which separates the user interface, application logic, and data storage. This design
makes the application stable, flexible, and easy to maintain.

The Solstice Client: Your Workspace
When you launch MyTISM, the first thing you’ll see is the Solstice client. This is your main
window—the command center from which you can control everything.

On the left side, you’ll find the Navigation Tree. This is your primary tool for finding your way
around the system. It organizes all available functions and data into folders.

The right side of the window is the main work area. This is where different elements like data
tables (Bookmarks) and detailed views (Forms) are displayed. At the top, a menu bar and toolbar
provide access to common commands and actions.

Core Features for Your Daily Work
MyTISM offers several key components to help you interact with your data. The items you work
with, like customers, projects, or invoices, are called Business Objects (BOs).

 Bookmarks Bookmarks are your primary tool for viewing lists of data. Think of them as
powerful, saved searches that display data records in a table. From a bookmark, you can:

• Double-click an entry to open its detailed form.

• Sort the data by clicking on a column header.

• A second click reverses the order.

• Use the search bar and interactive filters to quickly find specific items.

• Export the selected data to a CSV or XLS file for use in other programs.

 Forms Forms are used to display and edit the details of a single data record (a BO). When you
open an item from a bookmark, it appears in a form. Here, you can view all its information, make
changes, and save them.

 Templates Templates are “blueprints“ for creating new data records. When you need to add a

161

new item, like a new project or support ticket, you use a template. This ensures all necessary
information is captured consistently.

 Reports Reports allow you to present your data in a printable format. This is useful for creating
labels or official documents like invoices, project summaries, or customer lists.

 Code Snippets These are small, reusable parts of a form that developers use. They help build
complex forms efficiently and ensure a consistent look and feel across the application.

A Typical Workflow
MyTISM is designed to be intuitive. Here is a step-by-step example of a common task:

1. Find your data: Use the Navigation Tree on the left to find the appropriate Bookmark. For
example, you might navigate to Projects → All Active Projects.

2. View the list: Double-click the bookmark to open a table showing all active projects.

3. Find a specific item: Use the search bar or click on column headers to sort the list and find the
project you need.

4. Open the details: Double-click the specific project row. This will open the project’s Form.

5. View or Edit: In the form, you can view all the details. If you have the necessary permissions,
you can edit the information and click the save button.

6. Create a new item: To create a new project, find the “New Project“ Template in the Navigation
Tree and double-click it. A blank form will open, ready for you to fill in.

Other Useful Functions
• Bulk Changes: You can select multiple entries in a bookmark and change them all at once.

• Full-Text Search: A powerful search function is available in bookmarks. It lets you find
information across all objects of the type displayed there.

• Notifications & Alarms: The system can automatically notify you about important events or
alert you when a deadline is approaching.

Help and Support
If you have questions or need assistance, please contact your system administrator or OAshi
support.

Getting Started Tips
• Take some time to familiarize yourself with the Solstice interface.

• Click through the menus and try out the various functions.

• Start by exploring Bookmarks and Templates to get a feel for how MyTISM works.

• Use the right-click context menu on items in the Navigation Tree and in bookmarks to discover

162

available actions.

• Don’t hesitate to use the available help and support resources.

We wish you every success with MyTISM! = Guide Rapide MyTISM - Un Framework de Base de
Données et d’Application :Email: <support@oashi.com> :Date: 2025-07-09 :toc: :icons: font

163

mailto:support@oashi.com

Bienvenue dans MyTISM !
MyTISM est un programme puissant qui vous aide à gérer et à traiter des informations. Imaginez-le
comme un bureau numérique où tout est bien organisé et toujours à portée de main.

Le nom « MyTISM » signifie « My Tool Is My… » (Mon Outil Est Mon…). Quel est cet outil, c’est à vous
de décider ! Il pourrait être votre Solution, votre Clé du succès ou votre Inspiration.

Pourquoi MyTISM ?
MyTISM a été développé pour vous faciliter le travail. Il offre une interface claire et intuitive ainsi
qu’une multitude de fonctionnalités utiles pour une gestion efficace de vos données. Le système est
basé sur une architecture à 3 niveaux, qui sépare l’interface utilisateur, la logique applicative et le
stockage des données. Cette conception rend l’application stable, flexible et facile à maintenir.

Le client Solstice : Votre espace de travail
Lorsque vous lancez MyTISM, la première chose que vous voyez est le client Solstice. C’est votre
fenêtre principale – le centre de commande à partir duquel vous pouvez tout contrôler.

Sur le côté gauche, vous trouverez l’arborescence de navigation. C’est votre principal outil pour
vous repérer dans le système. Elle organise toutes les fonctions et données disponibles dans des
dossiers.

Le côté droit de la fenêtre est la zone de travail principale. C’est ici que différents éléments comme
les tableaux de données (Marque-pages) et les vues détaillées (Formulaires) sont affichés. En haut,
une barre de menus et une barre d’outils donnent accès aux commandes et actions courantes.

Fonctionnalités clés pour votre travail quotidien
MyTISM offre plusieurs composants clés pour interagir avec vos données. Les éléments avec
lesquels vous travaillez, tels que les clients, les projets ou les factures, sont appelés Objets Métier
(BOs).

 Marque-pages Les marque-pages sont votre principal outil pour afficher des listes de données.
Imaginez-les comme des recherches puissantes et enregistrées qui affichent les enregistrements de
données dans un tableau. À partir d’un marque-page, vous pouvez :

• Double-cliquer sur une entrée pour afficher son formulaire détaillé.

• Trier les données en cliquant sur un en-tête de colonne.

• Un deuxième clic inverse l’ordre.

• Utiliser la barre de recherche et les filtres interactifs pour trouver rapidement des éléments
spécifiques.

• Exporter les données sélectionnées vers un fichier CSV ou XLS pour les utiliser dans d’autres
programmes.

164

 Formulaires Les formulaires sont utilisés pour afficher et modifier les détails d’un seul
enregistrement (un BO). Lorsque vous ouvrez un élément à partir d’un marque-page, il apparaît
dans un formulaire. Ici, vous pouvez consulter toutes ses informations, apporter des modifications
et les enregistrer.

 Modèles Les modèles sont des « plans » pour la création de nouveaux enregistrements. Lorsque
vous devez ajouter un nouvel élément, comme un nouveau projet ou un ticket de support, vous
utilisez un modèle. Cela garantit que toutes les informations nécessaires sont saisies de manière
cohérente.

 Rapports Les rapports vous permettent de présenter vos données dans un format imprimable.
Ceci est utile pour créer des étiquettes ou des documents officiels comme des factures, des résumés
de projet ou des listes de clients.

 Blocs de code Ce sont de petites parties réutilisables d’un formulaire qui sont utilisées par les
développeurs. Ils aident à construire des formulaires complexes de manière efficace et à garantir
une apparence cohérente dans toute l’application.

Un flux de travail typique
MyTISM est conçu pour être intuitif. Voici un exemple étape par étape d’une tâche courante :

1. Trouvez vos données : Utilisez l’arborescence de navigation à gauche pour trouver le
marque-page approprié. Vous pourriez par exemple naviguer vers Projets → Tous les projets
actifs.

2. Consultez la liste : Double-cliquez sur le marque-page pour ouvrir un tableau affichant tous les
projets actifs.

3. Trouvez un élément spécifique : Utilisez la barre de recherche ou cliquez sur les en-têtes de
colonne pour trier la liste et trouver le projet souhaité.

4. Ouvrez les détails : Double-cliquez sur la ligne du projet correspondant. Cela ouvrira le
formulaire du projet.

5. Affichez ou modifiez : Dans le formulaire, vous pouvez voir tous les détails. Si vous disposez
des autorisations nécessaires, vous pouvez modifier les informations et cliquer sur le bouton «
Enregistrer ».

6. Créez une nouvelle entrée : Pour créer un nouveau projet, recherchez le modèle « Nouveau
projet » dans l’arborescence de navigation et double-cliquez dessus. Un formulaire vide
s’ouvrira, prêt à être rempli.

Autres fonctions utiles
• Modifications en masse : Vous pouvez sélectionner plusieurs entrées dans un marque-page et

les modifier toutes en même temps.

• Recherche plein texte : Une fonction de recherche puissante est disponible dans les marque-
pages. Elle vous permet de trouver des informations sur tous les objets du type qui y est affiché.

• Notifications & Alarmes : Le système peut vous informer automatiquement des événements

165

importants ou vous alerter à l’approche d’une échéance.

Aide et Support
Si vous avez des questions ou si vous avez besoin d’aide, veuillez contacter votre administrateur
système ou le support d’OAsh.

Conseils pour démarrer
• Prenez un peu de temps pour vous familiariser avec l’interface de Solstice.

• Parcourez les menus et essayez les différentes fonctions.

• Commencez par explorer les marque-pages et les modèles pour vous faire une idée du
fonctionnement de MyTISM.

• Utilisez le menu contextuel (clic droit) sur les éléments de l’arborescence de navigation et dans
les marque-pages pour découvrir les actions disponibles.

• N’hésitez pas à utiliser les ressources d’aide et de support disponibles.

Nous vous souhaitons beaucoup de succès avec MyTISM ! = MyTISM Kuerz-Uleedung - En
Datebank- an Applikatiouns-Framework :Email: <support@oashi.com> :Date: 2025-07-09 :toc:
:icons: font

166

mailto:support@oashi.com

Wëllkomm bei MyTISM!
MyTISM ass e mächtege Programm, deen Iech hëlleft, Informatiounen ze verwalten an ze
veraarbechten. Stellt Iech et wéi en digitale Büro vir, an deem alles iwwersiichtlech zortéiert an
ëmmer bei der Hand ass.

Den Numm „MyTISM“ steet fir „My Tool Is My…“ (Mäin Tool Ass Mäin…). Wat dat Tool ass,
decidéiert Dir! Et kéint Är Léisung, Äre Schlëssel zum Erfolleg oder Är Inspiratioun sinn.

Firwat MyTISM?
MyTISM gouf entwéckelt, fir Iech d’Aarbecht méi einfach ze maachen. Et bitt eng kloer, intuitiv
Benotzeruewerfläch an eng Villzuel vun nëtzleche Funktiounen fir eng effizient Gestioun vun Ären
Donnéeën. De System baséiert op enger 3-Schichten-Architektur, déi d’Benotzeruewerfläch,
d’Applikatiounslogik an d’Datespäicherung vunenee trennt. Dës Konceptioun mécht d’Applikatioun
stabil, flexibel an einfach ze entretenéieren.

De Solstice-Client: Ären Aarbechtsberäich
Wann Dir MyTISM start, ass dat éischt, wat Dir gesitt, de Solstice-Client. Dat ass Är Haaptfënster –
d’Kommandozentral, vun där aus Dir alles steiere kënnt.

Op der lénker Säit fannt Dir den Navigatiouns-Bam. Dat ass Äert Haaptinstrument, fir Iech am
System erëmzefannen. E organiséiert all verfügbar Funktiounen an Donnéeën an Dossieren.

Déi riets Säit vun der Fënster ass den Haaptaarbechtsberäich. Hei ginn verschidden Elementer wéi
Donnéeëstabellen (Lieszeechen) an detailléiert Usiichten (Formulairë) ugewisen. Uewen
erméiglechen eng Menüsläischt an eng Toolbar den Zougrëff op gängeg Befehler an Aktiounen.

Kärfunktioune fir Är alldeeglech Aarbecht
MyTISM bitt verschidde Schlësselkomponente fir mat Ären Donnéeën ze interagéieren.
D’Elementer, mat deenen Dir schafft, wéi Clienten, Projeten oder Rechnungen, ginn als
Geschäftsobjekter (BOs) bezeechent.

 Lieszeechen Lieszeeche sinn Äert Haaptinstrument fir d’Uweise vun Donnéeëlëschten. Stellt Iech
se wéi mächteg, gespäichert Siche vir, déi Donnéeësätz an enger Tabell uweisen. Vun engem
Lieszeechen aus kënnt Dir:

• Duebelklicken op en Asaz, fir säin detailléierte Formulaire unzeweisen.

• D’Donnéeën duerch Klick op eng Kolonn-Iwwerschrëft zortéieren.

• En zweete Klick dréint d’Reiefolleg ëm.

• D’Sichläischt an interaktiv Filtere benotzen, fir spezifesch Elementer séier ze fannen.

• Déi ausgewielt Donnéeën an eng CSV- oder XLS-Datei exportéieren, fir se an anere Programmer
ze benotzen.

167

 Formulairë Formulairë gi benotzt, fir d’Detailer vun engem eenzegen Donnéeësaz (e BO)
unzeweisen an z’änneren. Wann Dir en Element aus engem Lieszeechen opmaacht, erschéngt et an
engem Formulaire. Hei kënnt Dir all seng Informatioune gesinn, Ännerunge maachen a se
späicheren.

 Schablounen Schabloune si „Pläng“ fir d’Erstelle vun neien Donnéeësätz. Wann Dir en neit
Element bäifüüge musst, wéi en neie Projet oder en Support-Ticket, benotzt Dir eng Schabloun. Dat
garantéiert, datt all néideg Informatioune kohärent erfaasst ginn.

 Rapporten Rapporte erméiglechen Iech, Är Donnéeën an engem dréckbare Format
duerzestellen. Dat ass nëtzlech fir Etiketten oder offiziell Dokumenter wéi Rechnungen, Projet-
Resümeeën oder Clientelëschten ze erstellen.

 Code-Bausteng Dat si kleng, erëmverwendbar Deeler vun engem Formulaire, déi vun den
Entwéckler benotzt ginn. Si hëllefen, komplex Formulairë effizient ze bauen an en eenheetlecht
Ausgesinn an der ganzer Applikatioun ze garantéieren.

En typeschen Aarbechtsoflaf
MyTISM ass intuitiv konzipéiert. Hei ass e Schrëtt-fir-Schrëtt-Beispill vun enger gängeger Aufgab:

1. Fannt Är Donnéeën: Benotzt den Navigatiouns-Bam op der lénker Säit, fir dat passend
Lieszeechen ze fannen. Dir kéint zum Beispill op Projeten → All aktiv Projeten navigéieren.

2. Kuckt d’Lëscht un: Duebelklickt op d’Lieszeechen, fir eng Tabell mat all den aktive Projeten
opzemaachen.

3. Fannt e spezifescht Element: Benotzt d’Sichläischt oder klickt op d’Kolonn-Iwwerschrëften, fir
d’Lëscht ze zortéieren an de gewënschte Projet ze fannen.

4. Maacht d’Detailer op: Duebelklickt op déi entspriechend Projet-Zell. Dat mécht de Formulaire
vum Projet op.

5. Uweisen oder Änneren: Am Formulaire kënnt Dir all Detailer gesinn. Wann Dir déi néideg
Berechtegungen hutt, kënnt Dir d’Informatiounen änneren an op de Knäppchen „Späicheren“
klicken.

6. Erstellt en neien Asaz: Fir en neie Projet ze erstellen, sicht d’Schabloun „Neie Projet“ am
Navigatiouns-Bam an duebelklickt drop. En eidele Formulaire mécht sech op, prett fir ausgefëllt
ze ginn.

Aner nëtzlech Funktiounen
• Massenännerungen: Dir kënnt méi Asätz an engem Lieszeechen auswielen a se all gläichzäiteg

änneren.

• Volltext-Sich: Eng mächteg Sichfunktioun ass an de Lieszeechen verfügbar. Si erméiglecht Iech,
Informatiounen iwwer all Objeten vum Typ ze fannen, deen do ugewisen gëtt.

• Notifikatiounen & Alarmen: De System kann Iech automatesch iwwer wichteg Evenementer
informéieren oder Iech warnen, wann en Delai méi no kënnt.

168

Hëllef an Support
Wann Dir Froen hutt oder Hëllef braucht, kontaktéiert w.e.g. Äre Systemadministrator oder den
OAshi-Support.

Tipps fir unzefänken
• Huelt Iech e bëssen Zäit, fir Iech mat der Solstice-Uewerfläch vertraut ze maachen.

• Klickt Iech duerch d’Menüen a probéiert déi verschidde Funktiounen aus.

• Fänkt domat un, d’Lieszeechen an d’Schablounen z’erfuerschen, fir e Gefill fir d’Aarbechtsweis
vu MyTISM ze kréien.

• Benotzt de Kontextmenü (riets-klick) op Elementer am Navigatiouns-Bam an an de Lieszeechen,
fir verfügbar Aktiounen z’entdecken.

• Zéckt net, déi verfügbar Hëllefs- a Support-Ressourcen ze notzen.

Mir wënschen Iech vill Erfolleg mat MyTISM!

169

	MyTISM - Ein Datenbank- und Anwendungs-Framework
	Inhaltsverzeichnis
	Einleitung
	MyTISM: Ein starkes Fundament für Ihre Anwendung

	Vorstellung von MyTISM
	Was bedeutet der Name "MyTISM"?
	Warum MyTISM?
	Was ist MyTISM genau?
	Was bringt die Zukunft?

	SOLSTICE - der Client
	Grundlagen
	Ansicht der Benutzeroberfläche
	Bereiche des Hauptfensters
	Mehrfachfenstermodus
	Navigationsbaum
	Aussehen und Position von Elementen
	Sichtbarkeit von Elementen

	Strukturelemente

	Arbeiten mit Strukturelementen
	Anzeige von Objekten (BOs)
	Export der Daten aus einem Lesezeichen
	Kopieren eines Objektes aus einem Lesezeichen
	Anordnen und Organisieren von Strukturelementen
	Erstellen und Bearbeiten von Strukturelementen

	Glossar
	Referenz Tastaturkürzel
	Sichern und Wiederherstellen von Strukturelementen
	Ausführung von Skripts bei Server-Ereignissen

	Lesezeichen
	Sortierung
	Sortierung nach einer Spalte
	Sortierung nach mehreren Spalten
	Vordefinierte Sortierung

	Suchmöglichkeiten
	Volltextsuche
	Interaktive Filter
	Definition von Filtern allgemein
	Texteingabefelder (type="string")
	Eingabefelder für Zahlen (type="decimal")
	Eingabefelder für Datumswerte (type="date")
	Checkboxen zur Ja/Nein/Egal-Auswahl
	Auswahlboxen zur Auswahl aus mehreren Optionen
	Statische Multiple-Choice-Filter
	Dynamische Multiple-Choice-Filter mit choiceQuery

	Dynamische Multiple-Choice-Filter mit choiceScript

	Trenner
	OQL-Klauseln
	Beispiele

	Volltextsuche auf zusätzliche Felder ausdehnen
	Fest eingestellte Filter
	Eigene Query-Schablone
	Bedingungsgruppen ("constraint groups")

	Massenänderungen / Skripting
	"Transform Scripts" für die Abfrageresultate
	Das Query-Element
	Abfrage von Entitäten die ein bestimmtes Interface implementieren
	Benutzung von GUI-Filtern bei Nutzung von withInterface
	Flag excludeOtherInterfaces für GUI-Filter

	Formulare
	Eingabemöglichkeiten nach Datentypen
	Timespan (Zeitspanne)
	Altes Standardformat
	"Doppelpunkt"-Format(e)
	"Marker"-Format(e)

	Diverses

	Pivot-Modus (Beta) in MyTISM verwenden
	Verfügbarkeit und Vorbereitung
	Pivot-Modus starten und beenden
	Datenanalyse in der Pivot-Ansicht
	Allgemeine Analyseschritte:

	Interpretation der Ergebnisse

	Schablonen
	Erzeugen des neuen Objektes

	Reports
	Grundlagen
	Was ist ein Report überhaupt?

	Erstellung eines neuen Reports
	(Eingabe-)Parameter für Reports
	Die Anker-Definition oder: Wie komme ich an die Daten?
	virtualProperties in Reports

	Das CBOFormat und seine Verwendung im Report
	Troubleshooting
	Seitenwechsel / Überlappende Felder / "wachsende" Felder bei dynamischem Text

	Codebausteine
	Einbinden von Codebausteinen
	Reiter "CookedParameter", "CookedReportDefinition" sowie "CookedAnkerDefinition" und "Codebausteine"

	Pfadangaben für Codebausteine
	Benamsung von Codebausteinen
	Inhalt von Codebausteinen
	hideComment beim Einbinden eines Codebausteines

	Argumente für Codebausteine
	Core-Codebausteine
	jahrMonatTag.filter

	Problembehebung
	IllegalArgumentException: Invalid parameter "xyz" given…​

	Benachrichtigungen
	Alarme
	Grundlagen
	Vorbereitung und Konfiguration
	Alarmsystem-Lizenz einspielen
	Alarmsystem aktivieren
	Sync-Events behandeln
	Benachrichtigungssystem aktivieren

	Anlegen und Verwalten von Alarmen
	Gruppe "Admins Alarmsystem"
	Alarme aktivieren und deaktivieren
	Testmodus für Alarme

	Gemeinsame Eigenschaften aller Alarme
	Erster Reiter
	Reiter "Erweitert"

	Einfacher Termin
	Allgemeine Eigenschaften festlegen
	Wann soll der einfache Termin stattfinden?
	Vorwarnzeit

	Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?

	BO-basierter Termin
	Allgemeine Eigenschaften festlegen
	Welche Objekte sollen "überwacht" werden?
	Exkurs: Vor- und Nachteile der verschiedenen BOMasken-Typen
	Skript
	Grooql-BOMasken
	OQL-BOMasken

	Wann soll der BO-basierte Termin (für ein Objekt) ausgelöst werden?
	Auslösedatum aus Objekt-Attribut auslesen
	Auslösedatum mit Skript berechnen

	Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
	Automatische Neuterminierung nach Auslösung
	Anhängen von (weiteren) Objekten
	BOBasierterTermin-Status

	Hinweise
	Allgemeine Eigenschaften festlegen
	Welche Objekte sollen "überwacht" werden?
	Wann soll der Hinweis ausgelöst werden?
	Ignorierte BTs/Änderungen
	Auslösung bei beliebiger Änderung, Erstellen oder Löschen von Objekten (Unter-Reiter "Einfach")
	Auslösung mittels Auslösekriterien (Unter-Reiter "Erweitert")
	Auslösung mittels Auslöseskript (Unter-Reiter "Skript")
	Mindestens eines oder alle gleichzeitig?
	Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
	Von wem muss die Änderung stammen?
	Ab wann ist der Hinweis aktiv?

	Wiedervorlagen
	Allgemeine Eigenschaften festlegen
	Welche Objekte sollen "überwacht" werden?
	Wann soll die Wiedervorlage ausgelöst werden?
	Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
	Wiedervorlage-Status

	Benachrichtigung bei Alarm-Auslösung
	Hartkodierte trigger()-Methode
	Benachrichtigungsskript "Sende Benachrichtigungen mittels dieses Skripts", Reiter "Erweitert"
	Standard-Mechanismus

	Logging/Historie und AlarmAusloesungen-Objekte
	Sonstige Infos
	"Verpasste" bzw. "Verspätete" Auslösung
	Neuinitialisierung der Objekt-Status für BO-basierten Terminen und Wiedervorlagen

	CBOFormat
	Was ist CBOFormat?
	Abweichendes Attribut aus der Attributkette als Label verwenden
	Datum und Zeitwert-Formatierung
	Zahlen-Formatierung
	Funktionsaufrufe
	Script-Verwendung
	Wo kann man das CBOFormat nun überhaupt einsetzen?

	MEX - Makros und erweiterte Query-Funktionen
	Definition von MEX
	Sichtbare Variablendefinition
	Unsichtbare Variablendefinition
	Variablenexpansion

	Unterstützung auf der Query-Seite
	Unterstützung in Solstice
	Gruppierung von Filtern

	Zukünftige Erweiterungen
	Vorbereitung und Konfiguration
	Volltextsuche aktivieren
	Einstellungen
	PostgreSQL: max_locks_per_transaction
	Betriebssystem: Mögliche Anzahl gleichzeitig offener Dateien
	indexAllByDefault
	indexDeletedBOs
	spellcheck
	fetchSize
	maxFieldLength und unlimitedFieldLength
	indexPath
	maxThreads
	directoryWrapper
	compassConfig

	Der Index
	Initiale Erstellung
	Erneute Erstellung / Re-Indexierung
	Verteilen des Index für synchronisierende Server
	Konfiguration für die in den Index aufzunehmenden Daten

	Benutzung der Volltextsuche
	Standard-Abfragen
	Einschränkungen der Entität

	Grooql (Groovy Object Query Language)
	Sprachumfang
	Beispiele für Filterskripte

	Einstellungen-Variablen
	Definition der vorhandenen/verfügbaren Variablen
	Abfrage von Einstellungen-Variablen in Skripten
	Setzen von abweichenden Werten für Benutzer oder Gruppen
	Lesezeichen und Anzeige in Benutzer- und Gruppen-Formularen

	Scripted Attributes
	Beispiele für Virtual Properties
	Caching
	Mögliche Cachemodi
	Neuberechnung bei true oder VERSIONED

	cached-Angabe direkt im Schema
	Positiv-Beispiel
	Negativ-Beispiel

	Standard-Werte
	Initialisierungsskript
	Probleme beim Start des Clients

	FAQ - Immer wiederkehrende Fragen und deren Beantwortung
	Benutzer-Passwort ändern / Change user password / Changer mot de passe
	Benutzer-Passwort ändern
	Change user password
	Changer mot de passe

	JavaWebstart-Cache löschen unter Windows
	Anzeige der Symbole auf SVGs umstellen
	Der Windows-Task-Manager zeigt mehr verwendeten Speicher an als der About-Dialog von MyTISM
	Willkommen bei MyTISM!
	Warum MyTISM?
	Der Solstice-Client: Ihr Arbeitsbereich
	Kernfunktionen für Ihre tägliche Arbeit
	Ein typischer Arbeitsablauf
	Weitere nützliche Funktionen
	Hilfe und Support
	Tipps für den Einstieg

	Welcome to MyTISM!
	Why MyTISM?
	The Solstice Client: Your Workspace
	Core Features for Your Daily Work
	A Typical Workflow
	Other Useful Functions
	Help and Support
	Getting Started Tips

	Bienvenue dans MyTISM !
	Pourquoi MyTISM ?
	Le client Solstice : Votre espace de travail
	Fonctionnalités clés pour votre travail quotidien
	Un flux de travail typique
	Autres fonctions utiles
	Aide et Support
	Conseils pour démarrer

	Wëllkomm bei MyTISM!
	Firwat MyTISM?
	De Solstice-Client: Ären Aarbechtsberäich
	Kärfunktioune fir Är alldeeglech Aarbecht
	En typeschen Aarbechtsoflaf
	Aner nëtzlech Funktiounen
	Hëllef an Support
	Tipps fir unzefänken

