MyTISM - Ein Datenbank- und
Anwendungs-Framework

Inhaltsverzeichnis

Einleitung

MyTISM: Ein starkes Fundament fiir Thre Anwendung

Vorstellung von MyTISM

Was bedeutet der Name "MyTISM"?
Warum MyTISM?

Was ist MyTISM genau?

Was bringt die Zukunft?

SOLSTICE - der Client

Grundlagen
Ansicht der Benutzeroberfldche
Bereiche des Hauptfensters
Mehrfachfenstermodus
Navigationsbaum
Aussehen und Position von Elementen
Sichtbarkeit von Elementen
Strukturelemente
Arbeiten mit Strukturelementen
Anzeige von Objekten (BOs)
Export der Daten aus einem Lesezeichen

Kopieren eines Objektes aus einem Lesezeichen

Anordnen und Organisieren von Strukturelementen

Erstellen und Bearbeiten von Strukturelementen
Glossar
Referenz Tastaturkiirzel

Sichern und Wiederherstellen von Strukturelementen

Ausfihrung von Skripts bei Server-Ereignissen
Lesezeichen
Sortierung
Sortierung nach einer Spalte
Sortierung nach mehreren Spalten
Vordefinierte Sortierung
Suchmaglichkeiten
Volltextsuche
Interaktive Filter
Definition von Filtern allgemein
Texteingabefelder (type="string")
Eingabefelder fiir Zahlen (type="decimal")
Eingabefelder fiir Datumswerte (type="date")

© © © 00 J O U1 b= W N =

NN NN NN DN DN DN DN DN DN DN B R R R s s s s
DO R W W WN NN R R B O 0000 g g ool O O o o o

Checkboxen zur Ja/Nein/Egal-Auswahl
Auswahlboxen zur Auswahl aus mehreren Optionen
Statische Multiple-Choice-Filter
Dynamische Multiple-Choice-Filter mit choiceQuery
Dynamische Multiple-Choice-Filter mit choiceScript
Trenner
OQL-Klauseln
Beispiele
Volltextsuche auf zuséatzliche Felder ausdehnen
Fest eingestellte Filter
Eigene Query-Schablone
Bedingungsgruppen ("constraint groups")
Massendnderungen / Skripting
"Transform Scripts" fir die Abfrageresultate
Das Query-Element
Abfrage von Entitdten die ein bestimmtes Interface implementieren
Benutzung von GUI-Filtern bei Nutzung von withInterface
Flag excludeOtherInterfaces fiir GUI-Filter
Formulare
Eingabemoglichkeiten nach Datentypen
Timespan (Zeitspanne)
Altes Standardformat
"Doppelpunkt"-Format(e)
"Marker"-Format(e)
Diverses
Pivot-Modus (Beta) in MyTISM verwenden
Verfligharkeit und Vorbereitung
Pivot-Modus starten und beenden
Datenanalyse in der Pivot-Ansicht
Allgemeine Analyseschritte:
Interpretation der Ergebnisse
Schablonen
Erzeugen des neuen Objektes
Reports
Grundlagen
Was ist ein Report tiberhaupt?
Erstellung eines neuen Reports
(Eingabe-)Parameter fiir Reports
Die Anker-Definition oder: Wie komme ich an die Daten?
virtualProperties in Reports

Das CBOFormat und seine Verwendung im Report

27
28
28
29
31
31
32
32
33
34
35
35
37
39
40
41
42
43
44
44
44
44
45
46
46
48
48
48
48
49
49
50
50
52
52
52
53
57
58
39
60

Troubleshooting
Seitenwechsel / Uberlappende Felder / "wachsende" Felder bei dynamischem Text
Codebausteine

Einbinden von Codebausteinen

61
61
62
62

Reiter "CookedParameter"”, "CookedReportDefinition" sowie "CookedAnkerDefinition" und 64

"Codebausteine"
Pfadangaben fiir Codebausteine
Benamsung von Codebausteinen
Inhalt von Codebausteinen
hideComment beim Einbinden eines Codebausteines
Argumente fiir Codebausteine
Core-Codebausteine
jahrMonatTag.filter
Problembehebung
[legalArgumentException: Invalid parameter "xyz" given...
Benachrichtigungen
Alarme
Grundlagen
Vorbereitung und Konfiguration
Alarmsystem-Lizenz einspielen
Alarmsystem aktivieren
Sync-Events behandeln
Benachrichtigungssystem aktivieren
Anlegen und Verwalten von Alarmen
Gruppe "Admins Alarmsystem"
Alarme aktivieren und deaktivieren
Testmodus fiir Alarme
Gemeinsame Eigenschaften aller Alarme
Erster Reiter
Reiter "Erweitert"
Einfacher Termin
Allgemeine Eigenschaften festlegen
Wann soll der einfache Termin stattfinden?
Vorwarnzeit
Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
BO-basierter Termin
Allgemeine Eigenschaften festlegen
Welche Objekte sollen "tiberwacht" werden?
Exkurs: Vor- und Nachteile der verschiedenen BOMasken-Typen
Skript
Grooql-BOMasken

64
64
65
66
67
68
68
69
69
70
71
72
74
74
74
74
74
75
75
75
75
77
77
78
79
79
79
80
80
82
82
82
82
83
84

OQL-BOMasken
Wann soll der BO-basierte Termin (fiir ein Objekt) ausgeltst werden?
Auslosedatum aus Objekt-Attribut auslesen
Auslosedatum mit Skript berechnen
Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
Automatische Neuterminierung nach Auslosung
Anhédngen von (weiteren) Objekten
BOBasierterTermin-Status
Hinweise
Allgemeine Eigenschaften festlegen
Welche Objekte sollen "tiberwacht" werden?
Wann soll der Hinweis ausgelost werden?
Ignorierte BTs/Anderungen
Auslésung bei beliebiger Anderung, Erstellen oder Loschen von Objekten (Unter-Reiter
"Einfach")
Auslosung mittels Auslosekriterien (Unter-Reiter "Erweitert")
Auslosung mittels Ausloseskript (Unter-Reiter "Skript")
Mindestens eines oder alle gleichzeitig?
Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
Von wem muss die Anderung stammen?
Ab wann ist der Hinweis aktiv?
Wiedervorlagen
Allgemeine Eigenschaften festlegen
Welche Objekte sollen "tiberwacht" werden?
Wann soll die Wiedervorlage ausgelost werden?
Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
Wiedervorlage-Status
Benachrichtigung bei Alarm-Auslosung
Hartkodierte trigger()-Methode
Benachrichtigungsskript "Sende Benachrichtigungen mittels dieses Skripts", Reiter
"Erweitert"
Standard-Mechanismus
Logging/Historie und AlarmAusloesungen-Objekte
Sonstige Infos
"Verpasste" bzw. "Verspatete" Auslosung
Neuinitialisierung der Objekt-Status fiir BO-basierten Terminen und Wiedervorlagen
CBOFormat
Was ist CBOFormat?
Abweichendes Attribut aus der Attributkette als Label verwenden
Datum und Zeitwert-Formatierung

Zahlen-Formatierung

84
85
85
85
87
87
88
89
90
90
91
91
91
92

92
94
95
95
95
96
97
98
98
98
99
99
100
100
100

102
105
106
106
106
107
108
110
111
113

Funktionsaufrufe
Script-Verwendung
Wo kann man das CBOFormat nun iiberhaupt einsetzen?
MEX - Makros und erweiterte Query-Funktionen
Definition von MEX
Sichtbare Variablendefinition
Unsichtbare Variablendefinition
Variablenexpansion
Unterstiitzung auf der Query-Seite
Unterstiitzung in Solstice
Gruppierung von Filtern
Zukiunftige Erweiterungen
Vorbereitung und Konfiguration
Volltextsuche aktivieren
Einstellungen

PostgreSQL: max_locks_per_transaction

Betriebssystem: Mogliche Anzahl gleichzeitig offener Dateien

indexAllByDefault
indexDeletedBOs
spellcheck
fetchSize
maxFieldLength und unlimitedFieldLength
indexPath
maxThreads
directoryWrapper
compassConfig
Der Index
Initiale Erstellung
Erneute Erstellung / Re-Indexierung
Verteilen des Index fiir synchronisierende Server
Konfiguration fir die in den Index aufzunehmenden Daten
Benutzung der Volltextsuche
Standard-Abfragen
Einschrdankungen der Entitat
Grooql (Groovy Object Query Language)
Sprachumfang
Beispiele fiir Filterskripte
Einstellungen-Variablen
Definition der vorhandenen/verfiigharen Variablen
Abfrage von Einstellungen-Variablen in Skripten

Setzen von abweichenden Werten fiir Benutzer oder Gruppen

115
117
118
119
120
120
120
120
122
123
123
125
126
126
126
126
126
126
127
127
127
128
128
129
130
130
131
131
131
132
132
133
133
133
134
135
136
137
138
139
140

Lesezeichen und Anzeige in Benutzer- und Gruppen-Formularen
Scripted Attributes
Beispiele fiir Virtual Properties
Caching
Mogliche Cachemodi
Neuberechnung bei true oder VERSIONED
cached-Angabe direkt im Schema
Positiv-Beispiel
Negativ-Beispiel
Standard-Werte
Initialisierungsskript
Probleme beim Start des Clients

FAQ - Immer wiederkehrende Fragen und deren Beantwortung

Benutzer-Passwort dndern / Change user password / Changer mot de passe

Benutzer-Passwort dndern

Change user password

Changer mot de passe
JavaWebstart-Cache loschen unter Windows

Anzeige der Symbole auf SVGs umstellen

Der Windows-Task-Manager zeigt mehr verwendeten Speicher an als der About-Dialog von

MyTISM
Willkommen bei MyTISM!
Warum MyTISM?
Der Solstice-Client: Ihr Arbeitsbereich
Kernfunktionen fiir Thre tagliche Arbeit
Ein typischer Arbeitsablauf
Weitere niitzliche Funktionen
Hilfe und Support
Tipps fir den Einstieg
Welcome to MyTISM!
Why MyTISM?
The Solstice Client: Your Workspace
Core Features for Your Daily Work
A Typical Workflow
Other Useful Functions
Help and Support
Getting Started Tips
Bienvenue dans MyTISM !
Pourquoi MyTISM ?
Le client Solstice : Votre espace de travail

Fonctionnalités clés pour votre travail quotidien

141
142
143
146
146
146
147
147
147
149
150
151
152
153
153
153
153
154
155
156

158
158
158
158
159
159
160
160
161
161
161
161
162
162
162
162
164
164
164
164

Un flux de travail typique 165

Autres fonctions utiles 165
Aide et Support 166
Conseils pour démarrer 166
Weéllkomm bei MyTISM! 167
Firwat MyTISM? 167
De Solstice-Client: Aren Aarbechtsberiich 167
Karfunktioune fir Ar alldeeglech Aarbecht 167
En typeschen Aarbechtsoflaf 168
Aner nétzlech Funktiounen 168
Héllef an Support 169

Tipps fir unzefanken 169

Einleitung

MyTISM ist ein leistungsstarkes Framework zur Entwicklung und Verwaltung von
Datenbankanwendungen. Es ist plattformunabhéngig, objektorientiert, dezentral, multiuserfahig,
individuell anpassbar und quelloffen. Mit MyTISM erhalten Sie ein 3-Tier-System inklusive GUI und
Web-Application-Server, das Thnen die Arbeit erheblich erleichtert. Es bietet eine umfassende
Sammlung von Tools und Funktionen, die dabei helfen, komplexe Anwendungen effizient zu
erstellen und zu verwalten. MyTISM wird entwickelt und betreut von der OAshi S.a r.l.

Dieses Handbuch fihrt Sie in die Grundlagen von MyTISM ein und zeigt Ihnen, wie Sie das
Framework optimal nutzen und die damit erstellten Anwendungen bedienen.

o Dieses Handbuch befindet sich noch in der Entwicklung. Wir arbeiten
kontinuierlich daran, es zu vervollstdndigen und zu verbessern.

Bei Fragen, Problemen oder Anregungen kontaktieren Sie uns gerne uber https://www.mytism.de/#
contact.

https://www.oashi.com
https://www.mytism.de/#contact
https://www.mytism.de/#contact

MyTISM: Ein starkes Fundament fiir IThre
Anwendung

Stellen Sie sich vor, Sie bauen ein Haus. MyTISM ist wie das Fundament, die Wande und das Dach,
die Threm Haus Stabilitdit und Flexibilitdt geben. Es ist ein Framework, das Entwicklern hilft,
Anwendungen zu erstellen, die zuverlassig, anpassungsfahig und einfach zu warten sind.

MyTISM teilt die Anwendung in drei Bereiche auf:
1. Das Aussehen (Frontend): Hier geht es um alles, was der Benutzer sieht und mit dem er

interagiert, wie z.B. Buttons, Meniis und Formulare.

2. Die Funktionen (Middleware): Hier wird festgelegt, was die Anwendung tut, z.B. Daten
verarbeiten, Berechnungen durchfithren oder Informationen anzeigen.

3. Die Daten (Backend): Alle wichtigen Daten werden hier sicher gespeichert und verwaltet.
Was sind die Vorteile von MyTISM?
+ Ubersichtlich und organisiert: Wie ein gut aufgeriumtes Haus ist der Code der Anwendung

strukturiert und leicht verstandlich.

* Flexibel und anpassbar: Anderungen an einem Teil der Anwendung haben keine grofien
Auswirkungen auf andere Teile. So kann die Anwendung leichter an neue Anforderungen
angepasst werden.

» Stabil und zuverladssig: MyTISM sorgt dafiir, dass Ihre Anwendung robust und

wartungsfreundlich ist.

Mit MyTISM bauen Entwickler Anwendungen, die wie ein solides Haus stabil, flexibel und
zukunftssicher sind.

Vorstellung von MyTISM

Was bedeutet der Name "MyTISM"?

MyTISM steht fir "My Tool Is My...".

Sie konnen den Satzanfang mit dem ergédnzen, was Ihnen am wichtigsten ist.
Zum Beispiel:

* My Tool Is My Solution: Mein Werkzeug ist meine Losung.
* My Tool Is My Key To Success: Mein Werkzeug ist mein Schliissel zum Erfolg.

* My Tool Is My Inspiration: Mein Werkzeug ist meine Inspiration.

MyTISM versteht sich dabei als universelles Software-Werkzeug.

Warum MyTISM?

Die Idee zu MyTISM entstand schon im August 2000. Doch dazu spater mehr.

Stellen Sie sich vor, Sie mochten ein Haus bauen. Sie konnten naturlich jeden einzelnen Ziegelstein
selbst formen und jeden Nagel von Hand schmieden. Aber es ist viel einfacher, fertige Ziegel, Nagel
und Werkzeuge zu verwenden, oder?

Genauso ist es bei der Softwareentwicklung. Es gibt viele fertige "Bausteine" (Frameworks), die man
verwenden kann, um Programme zu erstellen. Warum also haben wir uns die Miihe gemacht,
MyTISM, unser eigenes Framework, zu entwickeln?

Ganz einfach: Weil wir keine passenden "Bausteine" gefunden haben, die all unsere Anforderungen
erfullt hatten. Damals haben wir festgestellt, dass die herkdmmliche Art, Datenbankanwendungen
zu entwickeln, sehr umstandlich und fehleranféllig ist. Wir wollten einen besseren Weg finden, um
Daten zu speichern und zu verwalten. Wir brauchten etwas, das flexibel, leistungsstark und einfach
zu bedienen ist. Also haben wir angefangen, unsere eigenen "Bausteine" zu bauen.

Nach vielen Experimenten und Tests haben wir schliefdlich MyTISM entwickelt. Es basiert auf dem
Prinzip der Objektorientierung und ermaoglicht es uns, Daten als Objekte zu behandeln. Dadurch
wird die Entwicklung von Datenbankanwendungen viel einfacher und intuitiver.

Und das Ergebnis kann sich sehen lassen! MyTISM ist das Herzstiick unserer Softwareentwicklung.
Es ist ein robustes und flexibles Framework, mit dem wir schnell und effizient mafigeschneiderte
Software fiir unsere Kunden entwickeln konnen.

Was ist MyTISM genau?

MyTISM ist ein Java-basiertes Anwendungsframework mit integrierter Datenbankunterstiitzung. Es
besteht aus einem oder mehreren miteinander verbundenen Servern (inkl. PostgreSQL-Datenbank)
und Clients, die iiber das Netzwerk darauf zugreifen. Der Hauptclient, Solstice, bietet eine grafische
Benutzeroberflache mit umfangreichen Konfigurationsmaoglichkeiten.

MyTISM ermoglicht die Entwicklung von Webanwendungen, die auf das MyTISM-System zugreifen,
und bietet Funktionen zur Erstellung von Berichten, zur Verwaltung von Benutzerrechten, zur
Versendung von Benachrichtigungen, zur Reaktion auf Ereignisse mittels seines Alarmsystems und
zur Automatisierung von Aufgaben via eigener Dienste.

MyTISM entstand aus der Vision, ein Framework zu schaffen, das die Liicken bestehender
Losungen schliefst und eine wirklich integrierte und effiziente Entwicklungsumgebung bietet.
MyTISM wurde aus der Notwendigkeit heraus geboren, komplexe Datenbankanwendungen zu
vereinfachen und zu beschleunigen. Es ist das Ergebnis jahrzehntelanger Erfahrung und
Entwicklung und bietet eine einzigartige Kombination von Funktionen und Flexibilitat.

Was bringt die Zukunft?

MyTISM ist nicht stehen geblieben! Wir haben es standig verbessert, neue Funktionen hinzugefuigt
und es noch leistungsstdrker gemacht. Es hat sich schon in Projekten aus verschiedensten
Bereichen vom Einzelhandel bis hin zur Industrieproduktion bewahrt.

Und keine Sorge, wir haben noch viele Ideen, wie wir MyTISM in Zukunft noch besser fiir Sie
machen kénnen!

SOLSTICE - der Client

Solstice ist ein Frontend bzw. eine Benutzeroberflache fir MyTISM - oder besser gesagt, das
Frontend, auch wenn, dank der modularen Bauweise von MyTISM, andere Frontends ohne
weiteres moglich sind.

Grundlagen

FIXME TODO Solstice Client starten

Ansicht der Benutzeroberflache

Die folgende Abbildung zeigt die Solstice-Oberfldche fiir den Benutzer "ERPTest".

(B)Demo-Account fuer die ERP-Funktionalitaet (ERPTest) / demo@localhost[127.0.0.1](tls)

Datei Bearbeiten Fenster Aktion Ansicht Navigation Hilfe

TN YNECETEITTILY:

% ERPTest

» O3 Marketin —
va Stammdagten | Geandert | Alle v Aktiv ff Keine Kunden Nr &
B Kunde A..IKunde... LI Namel | Name2 | ort | Bankverbindung
O kunden]
& vertrieb] OAshi Sar.l Wasserbillig
L] Schreinerei Hobel
] Glaserei Klirr Pressenheim
B Elektro Blitz
L] Restaurant Schmackofatz Werkauferhausen
[Schneiderei SchnippSchnapp Elefantenhausen

Navigationsbaum

Strukturelement
(Lesezeichen)

|[|3 Kunden] .‘

Abb. 1: Ansicht des Hauptfensters des Solstice-Clients im Einfenstermodus

Bereiche des Hauptfensters

Die Menitleiste befindet sich am oberen Rand des MyTISM-Solstice-Fensters. Nach Auswahl einer
Menitikategorie o0ffnet sich ein Unterment mit weiteren Eintragen. (Ein schwarzer Pfeil zeigt an,
dass das Menu noch weiter geschachtelt ist.) Die einzelnen Mentipunkte lassen sich entweder durch
Klicken anwéhlen oder durch Tastaturkurzel aufrufen.

In jedem Hauptmenuipunkt ist ein Buchstabe unterstrichen. Tippt man diesen

o Buchstaben mit gedriickter "ALT"-Taste ein, 6ffnet sich das Unterment. Die Kiirzel
zum Offnen der Unterpunkte werden am rechten Rand der Mentipunktzeile
angezeigt.

FIXME TODO weitere Beschreibung der Menitleiste (Kiirzel, "2. Reihe" m. bildl. Symbolen
beschreiben).

Unterhalb der Menitleiste auf der linken Seite ist der Navigationsbaum zu finden. Auf der freien

Flache rechts davon werden die geoffneten sogenannten Strukturelemente angeordnet.

Mehrfachfenstermodus

Neben dem in der Abbildung gezeigten klassischen Einzelfenstermodus kann Solstice Uber die
Mentileiste Uber den Mentupunkt (Datei zum Mehfachfenstermodus wechseln) alternativ im
Mehrfachfenstermodus gedffnet werden. So wird jedes Element in einem eigenen Fenster geoffnet
und kann frei angeordnet werden (u.a. lassen sich so die Elemente iiber mehrere Monitore
verteilen und dort beliebig vergrofern).

Navigationsbaum

Der Navigationsbaum stellt eine wichtige Komponente der Solstice-Benutzeroberflache dar, indem
er fir den jeweiligen Benutzer den Zugriff auf die fiir ihn verfiigharen Elemente strukturiert und
somit eine benutzerspezifische Systemiibersicht bietet.

Angezeigt werden im Navigationsbaum generell:

 Strukturelemente (Ordner,Lesezeichen, Schablonen, Formulare, Reports und Aliase darauf)
o virtuelle Ordner
= ein virtueller Ordner fiir den angemeldeten Benutzer
= flir Administratoren ein virtueller Ordner mit allen Benutzern

= und nach dem Suchen von Strukturelementen ein virtueller Ordner mit Unterordnern
fir die Suchergebnisse.

Aussehen und Position von Elementen

Im Normalfall werden Elemente in Ordnern alphabetisch sortiert; es ist jedoch moglich, eine
gewlnschte Reihenfolge manuell festzulegen, indem man fir das Element eine gewtinschte
Position eintrdgt. Elemente mit Position werden in der dadurch angegebenen Reihenfolge und vor
allen Elementen ohne Position angezeigt.

Es ist auflerdem moglich, Elemente durch zuweisen einer Hintergrundfarbe besonders
hervorzuheben. Die Farbe muss HTML-kodiert angegeben werden.

Sichtbarkeit von Elementen

Welche Strukturelemente im Navigationsbaum fiir einen angemeldeten Benutzer sichtbar sind,
wird von mehreren Faktoren gesteuert; u.a. im Zusammenspiel mit den von der
[Rechteverwaltung] vergebenen Rechten.

Strukturelemente

Strukturelement ist der Oberbegriff fiir alle Elemente der Benutzeroberfldche, mit denen man Daten
anzeigen und manipulieren kann. Dies sind Lesezeichen, Formulare, Schablonen, Codebausteine,
Reports sowie Aliase und Ordner.

10

technischer Hintergrund:
MyTISM speichert die Daten in einer objektorientierten Datenbank.
Datenelemente eines Typs werden jeweils in einer Datenbanktabelle
zusammengefasst. Dabei konnen die Daten in einer Eltern-Kind Hierarchie
angeordnet werden, so dass die Eigenschaften der tibergeordneten Struktur auch
fur die 'Kindtabelle' gelten.

e Beispiel: mogliche (Tabellen-)hierarchie fir Belege:

Beleg DebitorenBeleg Rechnung Endabrechnung
Beleg DebitorenBeleg Auftrag

Wird fir Objekte (- in MyTISM auch [BO]s genannt -) des Typs Beleg die
Eigenschaft Adressat festgelegt, haben automatisch auch beispielsweise Datenséatze
des Typs Endabrechnung und Auftrag jeweils einen Adressaten.

Fir Endanwender sind von den im folgenden beschriebenen Strukturelementen maoglicherweise
nur Lesezeichen, Formulare (bzw. die Aliase hierauf) und Reports interessant, wahrend
Schablonen und Codebausteine nur fiir diejenigen Anwender relevant sind, die selbst
Strukturelemente (weiter-)entwickeln mochten.

Lesezeichen
Symbol Beschreibung

Lesezeichen zeigen in Tabellen- bzw Listenform eine Menge von Objekten (BOs) an. Die
angezeigten Daten kann man mittels der Query-Zeile noch weiter einschranken / filtern
(siehe "[Suchfunktion]").

Technisch gesprochen, handelt es sich bei einem Lesezeichen um eine
0 gespeicherte Abfrage. Angezeigt werden alle Objekte aus einer Tabelle,
die nicht als geloscht markiert sind.

Formular
Symbol Beschreibung

Bei einem Formular handelt es sich um die Definition beziiglich der Darstellung von
"Bl Daten:

In einem Formular werden einzelne Objekte angezeigt, konnen dort aber auch
bearbeitet oder neu angelegt werden. Durch das Formular wird festgelegt, in welchen
Feldern die einzelnen Werte angezeigt werden, wie diese Felder angeordnet sind, usw.

Schablone
Symbol Beschreibung

Die Schablonendefinition legt fest, von welchem Typ das neu erzeugte Objekt sein soll

-".ﬂ Bei einer Schablone handelt es sich um die "Bauanleitung" fiir ein neues Objekt:
und mit welchem Formular es dargestellt und bearbeitet werden soll.

11

Codebaustein

Symbol

Report
Symbol

Alias

12

Beschreibung

Bei einem Codebaustein handelt es sich um ein eher technisches Strukturelement fiir
Entwickler, das fiir den reinen Endbenutzer eher uninteressant ist, da es nicht direkt
angezeigt wird:

Ein Codebaustein ist im Prinzip ein Stiick XML-Quellcode, welches man mit einer
entsprechenden Anweisung in den Quellcode eines anderen Strukturelements
einbinden kann. Dies dient dazu, doppelten Code zu vermeiden und gleiche, oft
benotigte Quelltext-Teile zentral verwalten und dndern zu konnen.

Beschreibung

Reports bieten Daten in einer druckbaren Form an. Mochte man z.B. eine Rechnung
drucken, dann muss man das Aussehen und die Anordnung der Rechnungsdaten in
Form eines Reports einmal definieren und kann fortan diesen fiir den Ausdruck (oder
die Erstellung eines PDFs) verwenden.

Reports werden in einem eigenen Kapitel ausfithrlicher beschrieben.

13

Symbol Beschreibung

[solstice Definition:

14

Bei einem Alias handelt es sich um einen Verweis auf ein Strukturelement.

Verwendung:

Aliase konnen im Kontextment eines Elements im Navigationsbaum mittels dem Befehl
Verlinken bzw. dem Tastaturkiirzel STRG+L erzeugt werden und mittels Einfiigen bzw.
STRG+V an einer anderen Stelle im Navigationsbaum eingefiigt werden. In der Praxis
werden Aliase beispielsweise dazu genutzt, benutzer- bzw. rollenspezifische Ordner zu
fullen. Ein 'Benutzerordner' dient dem jeweiligen Benutzer als zentrale, schnell
zugreifbare Ansicht fir die fiir ihn freigegebenen Strukturelemente, wahrend das
Originalstrukturelement an zentraler Stelle abgelegt ist.

Aliase sind nicht zu verwechseln mit vollwertigen Kopien - ein Alias
verweist immer auf ein Original und erbt dessen Rechte. Beim
Doppelklick auf den Alias 6ffnet sich das Original, wahrend eine Kopie

o natirlich ein eigenstdndiges Objekt ist, das separat gepflegt werden
muss. (Ahnlich wie eine Kopie, aber das Objekt wird nicht wirklich
kopiert; es wird lediglich ein "Verweis" auf das Originalobjekt. Alle
Anderungen, die an einem der beiden vorgenommen werden, wirken
sich auf "das andere" aus.

Arbeiten mit Strukturelementen

alias

Anzeige von Objekten (BOs)

Ein typischer, einfacher Arbeitsablauf, um ein Objekt anzusehen, beginnt hdufig mit der Auswahl
eines Lesezeichens im Navigationsbaum. Ein Doppelklick auf einen im Lesezeichen angezeigten
Listeneintrag 6ffnet das dort beschriebene Objekt im zugehorigen Formular.

Es konnen mehrere Formulare fiir Objekte eines Typs existieren. Jedem Formular
ist eine Prioritdt und ein BO-Typ zugewiesen. Sollten also mehrere Formulare
existieren, mit denen das Offnen des ausgewéihlten Objekts moglich ist, wird das
Formular mit der héchsten Prioritat gewahlt. Haben mehrere passende Formulare
die gleiche Prioritat, wird das Formular bevorzugt, das vom BO-Typ her besser auf
o das zu offnende Objekt passt, d.h. einem spezielleren passenden BO-Typen
zugeordnet ist. Sollte es danach immer noch mehrere Formulare geben, die
passen, wird zuerst nach Name und bei Gleichheit nach Id sortiert, um ein
eindeutiges Formular zu bestimmen. Mit Hilfe der rechten Maustaste kann man
sich alle (auf Grund der jeweiligen Berechtigung sichtbaren) zur Verfigung
stehenden Formulare anzeigen lassen. So ist es auch maglich, ein Formular mit
einer niedrigeren Prioritat oder fiir einen allgemeineren BO-Typen auszuwahlen.

Export der Daten aus einem Lesezeichen

Es ist moglich die selektierten Daten aus einem Lesezeichen in eine Datei zu exportieren. Zur
Auswahl steht das CSV- oder das XLS Format. Dazu werden zuerst die gewilnschten Daten
selektiert. Nach einem Klick auf die rechte Maustaste erscheint das entsprechende Kontextmenti.

|| Die selektierten Zellen inkl. Tabelleniberschriften in eine csv-Datei exportieren - Codepage und Zeilenende-Zeichen kénnen gewahlt werden |

&+ Selektion nach csv exportieren Alt-E]

Alles nach xls exportieren Alt-X

ﬁ Objekt-Ids kopieren Alt-1

ED Selektion in Zwischenablage kopieren Strg-C

@ In den Pivot-Modus wechseln Alt-P

@Anzeige geléschter Objekte ein- bzw. ausschalten Alt-T I ‘_

Neben diversen Einstellungsmoglichkeiten bietet der CSV Export noch folgende Features:

* Die zur Auswahl stehenden Codepages konnen durch eine Einstellungsvariable vorgegeben
werden. Hierzu existiert eine Variable mit dem Namen csvExport.codepages (diese wird vom
Server implizit beim Start angelegt, sofern noch nicht vorhanden). Als Wert erhalt diese
Variable eine Liste von Codepages, welche durch ein Komma getrennt sind, z.B.: UTF-8,Windows-
1252,1S0-8859-1,1S0-8859-15. Der erstgenannte Wert ist der Default.

* Die Einstellungen des CSV Exportes werden lokal fiir den jeweiligen Benutzer gespeichert. Beim
nachsten Mal sind diese standardmaéfig vorgewahlt.

e Zum Abspeichern wird ein Dateiname vom System vorgeschlagen. Dieser besteht aus dem
Entitdt-Namen der zu exportierenden Tabelle, der aktuellen Uhrzeit und der Dateiendung .csv.

15

Suchen in: ID\r‘orlagen all [ﬁ][ﬁ][iﬂ][EFIEH]

Codepage: | UTF-8 W |

Zeilenende-Zeichen

O cr/LF (DOswin) (O CR(Mac) (O LF (Unix)

Feldtrenner-Zeichen

©: O, Ospace O TAB
(™ Anderes Zeichen _

Texttrenner-Zeichen
(\ " ('\ '
(O Anderes Zeichen :F#|

[Erste Zeile mit Spaltentiteln schreiben

Dateiname: :_Artikel_zcllg-DE-DS-lZ-DCI.csv

Dateityp: | CSV-Files v |

[Exportieren | [Abbrechen]

Kopieren eines Objektes aus einem Lesezeichen

1 Produkt bearbeiten mit Script
jekt kopieren...

Aus dem Kontextment eines Lesezeichen kann ein BO kopiert werden.
Damit der Mentupunkt zur Verfliigung steht, muss dem jeweiligen Benutzer (bzw. einer Gruppe des
Benutzers) eine Schablone fiir den zu kopierenden Objekttyp zugewiesen sein.

Anordnen und Organisieren von Strukturelementen

Strukturelemente konnen in Solstice zwischen verschiedenen Ordnern verschoben und kopiert
werden, und es konnen sog. [alias]>Aliase (Verknupfungen) angelegt werden. Dies geschieht
ublicherweise tber den Navigationsbaum, indem man mit der linken Maustaste auf das
Strukturelement anwahlt und es - mit weiterhin gehaltener Maustaste - an die gewunschte Stelle
"zieht".

Halt man beim Loslassen keine weitere Taste gedriickt, wird eine Verknupfung erstellt. Halt man
beim Loslassen die Taste STRG gedruckt, so wird das Objekt verschoben; hat man die Taste ALT
gedruckt, so wird das eine Kopie des Objekts an dieser Stelle angelegt. Automatik-Elemente konnen
nur kopiert werden; einen Alias zu erstellen oder das Element zu verschieben wird komplett
ignoriert.

16

Erstellen und Bearbeiten von Strukturelementen

Die Lesezeichen-, Formular- und Schablonen selbst konnen bearbeitet werden, indem man
entweder das Strukturelement anwéhlt und ALT+EINGABE drickt oder im Kontextmenu des
Objekts (Objekt anwéahlen, rechte Maustaste driicken) den Mentipunkt Information wahlt.
Voraussetzung zum Editieren sind Schreibrechte, die durch den Systemadministrator fiir jeden
Benutzer pro BO vergeben werden konnen.

Glossar

FIXME Verschieben ans Ende der User-doku. Es handelt sich hier nicht (nur) um Solstice-spezifische
Begriffe, sondern um solche, die fiir das Verstdndnis von MyTISM im allgemeinen wichtig sind.
Eigenes .ad-Dokument hieraus erzeugen

BO /CBO/SBO

BO ist die Abkirzung fiir "Business Object" - jedes Objekt ("Datensatz") in MyTISM ist ein BO.
Jedes BO hat einen BO-Typ, welcher die Eigenschaften des BOs definiert.

Beispiel

Eine "Person” ist ein BO vom Typ "Person” und hat z.B. die Felder "Vorname", "Nachname",
"Geschlecht", ...

BOs werden der Ubersichtlichkeit halber nochmal unterteilt in "Complex Business Object" (CBO)
und "Simple Business Object" (SBO). Quertabellen wie z.B. "Geschlecht", die nur wenige Eintrage
(wie in diesem Fall "ménnlich" und "weiblich") haben, sind typische Vertreter fiir ein SBO. Eine
"Rechnung" ist da schon was komplexeres und demzufolge vom Typ "CBO".

Quertabelle

Quertabellen sind Nachschlagetabellen, die hauptsachlich vorinitialisierte Daten enthalten. Es
handelt sich hierbei haufig um fiir das System zentrale Daten, die sich selten &ndern und deren
Werte bereits bekannt sind. Ein typisches Beispiel fuir solche Daten sind Einheiten. Zentrale
Einheiten wie bestimmte Mafdeinheiten und Gewichte (Gramm, Kilogramm etc.) werden bereits
durch das ERP-Modul bereitgestellt. Solche vordefinierten Quertabellen konnen aber prinzipiell
durch berechtigte Benutzer jederzeit erweitert werden.

Schema

FIXME (Entscheiden, ob dieser Begriff hier aufgenommen wird; evtl zu technisch u. eher f.
Developer-Doku relevant)

Virtual Attributes / Scripted Attributes

MyTISM bietet die Moglichkeit, im laufenden Betrieb Datenfelder in Formulare, Lesezeichen und
Reports nachzubauen. Diese nennt man Virtual Attributes oder auch Scripted Attributes.

Fir alle im Schema der jeweiligen MyTISM-Installation definierten BOs werden beim Start des
Servers automatisch jeweils ein Lesezeichen (das alle BOs der entsprechenden Klasse anzeigt)
sowie ein Formular und eine Schablone erstellt. Daneben existieren fir manche Klassen auch noch
angepasste, "schonere" vorgebaute Strukturelemente, die ebenfalls automatisch eingespielt
werden.

17

Referenz Tastaturkiirzel

to be continued

F2

Funktion: Speichern
Wo: Formular

F3

Funktion: Speichern und Schliessen
Wo: Formular

F4

Funktion: Popup aufklappen
Wo: Formular

ES

Funktion: Aktualisierung der Daten/Anzeige
Wo: Lesezeichen, Meniu-Baum

ESC

Funktion: Ansicht schliessen
Wo: Formular, Lesezeichen

STRG-F

Funktion: Suchen (Strukturelemente: Formular, Lesezeichen, Report, ...)

Wo: tiberall

STRG-S

Funktion: Speichern
Wo: Formular

Sichern und Wiederherstellen von Strukturelementen

Unter dem Mentupunkt Entwicklung gibt es die Funktion Struktur-Synchronisation
werden alle Strukturelemente (Formulare, Lesezeichen, Schablonen, Reports, etc.), bei denen ein
(im Prinzip frei wahlbarer) Dateiname definiert ist als XML-Dateien in einem Verzeichnis
gespeichert bzw. Strukturelemente aus diesen Dateien wieder in die Datenbank eingespielt.

18

@ (Neu) Dateisystem-Sync #/Bot.Name[unknown]#[-1001129]

Aktionen Meldungen Filtern nach Status Filtern nach Typ

| o Vergleichen | Zeige Protokell ¥ Zeige "Info"-Meldungen Gednderte [v Zu importierende E Aliase B Lesezeichen
’ Zeige "Debug"-Meldungen MNeue B Zu exportierende B | Codebausteine Schablonen

| @Alles synchronisieren | Zeige "Trace"-Meldungen Mit Fehler B Fur automatischen Sync B Formulare B Reports

Sync automatisch durchfithren

Gefilterte Eintrige

@ ‘ @ Automatisch a Exportieren ﬂ Importieren
StatusT... & Typ | MName | Datum ¥ | Elte
changedDB Formular Beleg 24.06.2013 12:52:14 [AdminsiVorg
changedDE Formular $R{ Mitarbeiter} $R{Buchhaltung} 20.06.2013 16:06:50 fAdmins/Z
changedDB Formular $R{ Ticket} 10.05.2013 13:49:17 JAdmins/$R{T
changedFS Lesezeichen $R{_Projekteintrag-s} 19.06.2013 07:53:13 /Admins/P = N Tid=
changedFS Formular DateiBeleg (ScanMen) 23.10.2012 09:41:02 [Admins/iorg 5 . g r fuer §R{_T
newDE Lesezeichen $R{ Ticket-s} 06.05.2013 09:26:41 JAdmins/$R{T :
newDE Formular $R{ TicketEroeffnung} 10.04.2013 10:24:59 JAdmins/$R{T
newDE Schablone $R{ Ticket} 10.04.2013 10:01:43 JAdminsiRIT
newDB Schablone $R{ TicketEroeffnung} + Zuweisung 10.04.2013 10:01:48 [AdminsiR{T <Label gre
newDE Schablone $R{_TicketEroeffnung} 10.04.2013 10:01:48 JAdmins/$R{T c:Poqu; f:ropert
newDB Report $R{_Ticket-s} 10.04.2013 10:01:48 JAdmins/$R{T
newDB Lesezeichen $R{ Ticket-s_eigene} 10.04.2013 10:01:48 JAdmins/$R{T
newDB Lesezeichen Ticksts - nicht zugewiesen 10.04.2013 10:01:48 JAdmins/$R{T
newDB Formular $R{ Projekt} 27.02.2013 12:17:07 JAdmins/P
newDE Lesezeichen $R{ Projekt-s} 27.02.2013 12:13:05 fAdmins/P
newDB Formular $R{_BS} 27.06.2012 10:54:32 fAdmins/D = e
newDE Schablone $R{_BS} Vorlage 01.03.2012 16:27:28 f/Admins/D >
newDB Schablone $R{_Projekt} 14.12.2011 10:14:17 fAdmins/P opup propert likatVon" e-x="0" e-y
<Table colum zelchnung j
Meldungen

D Manager deaktiviert

Die Bedienung sollte grofdtenteils selbsterkldrend sein.

* Mit den diversen Filtern ist es moglich, die Liste nach vorgegebenen Kriterien auszudinnen.

* Unter Meldungen kann man die Anzeige der Log-Meldungen aktivieren und angeben, wie genau
man dort Uber die Vorgange informiert werden will.

* Der Knopf Vergleichen erlaubt es, die Liste manuell zu aktualisieren.

* Der Knopf Alles synchronisieren exportiert bzw. importiert automatisch alle Strukturelemente,
abhéngig von ihrem Status und speichert danach auch automatisch die entstandenen
Anderungen ab.

* Sync automatisch durchfihren uberwacht Datenbank wund Verzeichnis selbsttitig auf
Anderungen und synchronisiert diese automatisch. FIXME: Es kann sein, dass das noch nicht
ganz korrekt funktioniert - Funktion wird fast nie benutzt.

Damit die exportierten Objekte auch einigermassen geordnet in Unterverzeichnissen liegen, die
ihrem Ordnernamen in Solstice entsprechen, sollte man dies im Dateinamen mit angeben. So
wirde man fir das Formular "MeinFormular"”, welches im Ordner "EigeneFormulare" liegt z.B.
folgenden Dateinamen eintragen: EigeneFormulare/MeinFormular. Die vorgebauten Formulare fir
Strukturelemente bieten einen Knopf "Dateiname vorschlagen" mit welchem man einen aus dem
Elterpfad generierten Dateinamen automatisch eintragen lassen kann.

Die exportierten Objekte enthalten je nach Typ folgende Kiirzel:

* bkm: Lesezeichen (fiir engl. "Bookmark")
* frm: Formular (fiir engl. "Form")

* tpl: Schablone (fur engl. "Template")

19

* rpt: Report (fiir Reports werden aus technischen Griinden tibrigens zwei Dateien abgespeichert,
. flie zweite der beiden Dateien hat gar kein "Mittelkiirzel")
uieleme

e bst: Codebaustein

Beim Sync der AnkerDefinition von Reports werden mehrfache Leerzeichen

° zwischen XML-Attributen von Tags nicht beim Diff beachtet. Aufderdem werden
Kommentare aufSerhalb des Wurzelknotens (ganz am Anfang oder ganz am Ende
des XML-Dokuments) ignoriert.

Ausfithrung von Skripts bei Server-Ereignissen

Im Normalfall werden bei Server-Ereignissen, wie Herunterfahren oder Systemnachrichten
voreingestellte Aktionen ausgefiihrt; meist wird (nur) eine Nachricht angezeigt. Mittels im
Benutzer-Profil definierter Skripts kann man jedoch auch in anderer Weise auf diese Ereignisse
reagieren. Beispiel:

<Configuration>
<Profile name="default">
<onSystemMessage>_client.log.warn("Systemmessage:
".")</onSystemMessage>
<onShutdownInitiated>_client.log.warn("Shutdown initiated: " + _msg + " in " +
_cSecsDelay + " seconds.")</onShutdownInitiated>
<onShutdownStopped>_client.log.warn("Shutdown stopped.")</onShutdownStopped>
<onShutdown>_client.log.warn("Server has been shut down.");
_client.close()</onShutdown>
<!-- Sonstiger Profil-Code -->
</Profile>
</Configuration>

+ _Msg +

Folgende Moglichkeiten stehen zur Verfigung:
» onSystemMessage: Wird aufgerufen, wenn eine Systemnachricht angekommen ist. Die Variable
_msg enthalt den Nachrichtentext.

* onShutdownlInitated: Wird aufgerufen, wenn die Bennachrichtigung tiber ein bevorstehendes
Herunterfahren des Servers angekommen ist. Die Variable _cSecsDelay enthélt die Anzahl der
Sekunden, die das Herunterfahren noch entfernt ist; _msg enthdlt ggf. den Text einer
zusatzlichen Information zum Herunterfahren, sofern einer mitgeliefert wurde.

* onShutdownStopped: Wird aufgerufen, wenn das Herunterfahren aus irgendeinem Grund
abgebrochen wurde.

» onServerLocked: Wird aufgerufen, wenn der Server gesperrt (keine Anmeldungen mehr
erlaubt) wurde.

* onServerUnlocked: Wird aufgerufen, wenn der Server wieder entsperrt wurde.

20

Lesezeichen

"Lesezeichen" ist die MyTISM-Bezeichnung fiir vordefinierte Datenbank-Abfragen in der Solstice-
Benutzeroberflache.

Im einfachsten Fall kdnnen in einem Lesezeichen bestehende Objekte aus der Datenbank mit einer
(eingeschrankten) Volltextsuche gesucht und in Tabellenform angezeigt werden.

Neben der Suche mit Suchbegriffen konnen auch zusatzliche sog. Filter definiert werden, die z.B.
uber eine Auswabhlliste eine weitere Einschrankung der Suchergebnisse ermdglichen.

Fir jedes Lesezeichen ist festgelegt, welcher Typ von Objekten damit abgefragt werden kann, wobei
im Normalfall dann nattirlich auch alle ggf. definierten Untertypen eingeschlossen sind.

Die gefundenen Objekte konnen dann aus dem Lesezeichen heraus zur Detailansicht oder
Bearbeitung gedffnet werden.

Auflerdem konnen mittels sog. Massendnderung Datendnderungen an mehreren oder allen der
gefundenen Objekte gleichzeitig vorgenommen werden.

Die in der Tabelle angezeigten Daten der Objekte konnen als CSV- oder Excel-Datei exportiert oder
in die Zwischenablage kopiert werden.

Weiterhin konnen spezielle Aktionen definiert werden, die dann mit mehreren oder allen der
Objekte vorprogrammierte Dinge tun.

Bei den meisten Werten fiir XML-Elemente und -Attribute fiir die XML-Definition
des Lesezeichens ist die Grof3-/Kleinschreibung wichtig und sie sollten genau so

o eingegeben werden, wie hier aufgefiihrt. "Historisch gewachsen" ist die
Schreibweise leider nicht einheitlich und so miussen manche Werte grofd und
manche klein geschrieben werden.

Die meisten der hier beschriebenen Mdoglichkeiten sind nicht nur in Lesezeichen,
o sondern allgemein in allen Table-XML-Elementen verfiighar; so insb. z.B. auch in
der Auswahlliste von GUI-Auswahlboxen (<Popup).

Sortierung

Die in Lesezeichen angezeigten Ergebnisse konnen nach Wunsch sortiert werden.

Sortierung nach einer Spalte

Soll nur nach einer Spalte sortiert werden, kann man hierzu einfach mit der Maus auf den Titel der
Spalte klicken. Ein weiterer Klick kehrt die Sortierreihenfolge um. Ein weiterer Klick hebt dann
wieder die Sortierung dieser Spalte auf.

21

#solstice_lesezeichen_volltextsuche

Sortierung nach mehreren Spalten

Auch eine Sortierung nach mehreren Spalten ist moglich; halt man beim Klick auf einen
Spaltennamen die STRG/CTRL-Taste gedriickt, so werden bisher definierte Sortier-Spalten
beibehalten.

Die Ergebnisse werden zuerst nach der zuerst ausgewdahlten Spalte sortiert; wenn fiir Objekte der
Wert dieser Spalte gleich ist, werden diese Objekte dann nach der als zweites ausgewdahlten Spalte
sortiert; usw.

Die Reihenfolge, in der die Spalten sortiert werden, ist anhand der Grofde der Symbole zu erkennen;
nach der Spalte mit dem grofiten Symbol wird zuerst sortiert.

Vordefinierte Sortierung

Es ist moglich, eine Sortierung dauerhaft bzw. als Standard-Einstellung im Lesezeichen zu
definieren.

Hierzu wird die Spaltendefinition innerhalb der Tabellendefinition erweitert. Wird die
Kurznotation der Tabellenspalten genutzt, konnen die Schlusselworter ASC (fir aufsteigende
Sortierung, also kleiner — grofer, dlter — jinger oder A - Z) und DESC (fiir absteigende Sortierung,
also grofler — Kkleiner, junger — Aalter oder Z - A) durch Komma getrennt hinter den
Attributnamen geschrieben.

Die Reihenfolge bzw. Prioritat der Sortierung kann als Zahl direkt hinter ASC oder DESC geschrieben
werden und muss innerhalb der Spaltendefinitionen eindeutig sein.

Beispiel fiir Standard-Einstellung Sortierung erst absteigend nach Belegdatum, dann aufsteigend nach
Kunde

<Table entity="Rechnung">
<Query type="Text"/>
<View>
<Columns>
Kunde, ASC2
Belegdatum, DESC1
Netto 'Netto-Betrag'
Brutto 'Brutto-Betrag'
Bankeinzug
</Columns>
</View>
</Table>

In der ausfiihrlichen Notiation fiir die Spalten werden die XML-Attribute sort und sortlLevel in
ahnlicher Weise benutzt.

Suchmoglichkeiten

22

Volltextsuche

In der Eingabezeile oberhalb der Tabelle konnen Suchbegriffe eingegeben und durch Driicken von
Return/Enter die Volltextsuche gestartet werden. Es werden alle Objekte des vordefinierten Typs
gefunden, bei denen einer der eingegebenen Begriffe in einem der Text- oder Zahlenfelder des
Objekts vorkommt.

o Neben der vordefinierten Menge an Feldern konnen aufSserdem zusitzliche Felder
definiert worden sein, die dann ebenfalls durchsucht werden.

Wenn man direkt vor einem Suchbegriff ein Pluszeichen + eingibt bedeutet das, dass der Begriff
vorkommen muss.

Ein direkt vorangestelltes Minuszeichen - bedeutet umgekehrt, dass der Begriff nicht vorkommen
darf.

Interaktive Filter

Neben der Volltextsuche konnen Lesezeichen mit zusitzlichen Eingabemoglichkeiten ausgestattet
werden, mit denen weitere Einschrankungen fiir die Ergebnismenge definiert werden.

Es gibt mehrere Typen dieser sogenannten Filter:

Texteingabefelder

Eingabefelder fiir Zahlen

» Eingabefelder fir Datumswerte

Checkboxen zur Ja/Nein/Egal-Auswahl

Auswahlboxen zur Auswahl aus mehreren Optionen

Definition von Filtern allgemein

Alle diese Filter konnen mittels <filter>-Kindelementen des <Query>-Elements erzeugt werden und
werden dann als Eingabefeld, Checkbox, usw. im Lesezeichen angezeigt.

Beispiel fiir ein Texteingabefeld zur Einschrdnkung der Ergebnismenge auf Dokumente mit einer
bestimmten Nummer:

<Query type="Text">
<filter type="string" title="Dokumentnummer" cols="30">
<clause>Dokumentnummer = "{}"</clause>
</filter>
</Query>

Folgende XML-Attribute sind dabei fur jeden Filtertyp verfigbar:

type
Verpflichtend - Was fiir ein Typ von Filter erzeugt werden soll; Mogliche Werte sind string fir
Texteingabefelder, decimal fir Eingabefelder fir Zahlen, date fiir Eingabefelder fur

23

#solstice_lesezeichen_zusaetzliche_felder

Datumswerte, bool fiir Checkboxen zur]Ja/Nein/Egal-Auswahl und multipleChoice fiir

uswahlboxen zur Auswahl aus mehreren Optionen.
nts/solst

title

(Meist) Optional - Wird als Beschriftung der Filterkomponente benutzt; falls nicht angegeben
wird stattdessen die clause (s.u.) als Titel verwendet.

name

Optional - Wird fir einige Fehlermeldungen und im Zusammenhang mit "dependent"-Filtern
benutzt FIXME

variable
Optional - FIXME

group

Optional - Mit diesem Attribut ist es moglich, den Filter einer sog. Bedingungsgruppe
zuzuordnen. Wird es nicht angegeben gehort der Filter zur Standardgruppe, die in der Query-
Schablone mit "{=constraints}" angesprochen wird.

grabFocus

Optional - Kann "true" oder "false" (der Standard) sein; der in der Reihenfolge der Definitionen
erste Filter mit grabFocus="true" erhdlt nach dem Offnen des Lesezeichens direkt den
Eingabefokus.

dependsOn

Optional - (FIXME Filter konnen voneinander abhéngen)

Texteingabefelder (type="string")

In "string"-Filtern konnen Zeichenketten angegeben werden, die in der Suche verwendet werden
sollen.

Folgende XML-Attribute konnen speziell fiir "string"-Filter benutzt werden:

cols

Optional - Die bevorzugte Breite des Eingabefeldes, in Zeichen.
Folgende XML-Kindelemente konnen speziell fur "string"-Filter benutzt werden:

clause

Verpflichtend - Die OQL-Klausel, die in die Datenbankabfrage eingefiigt wird, wenn in diesem
Filter ein Wert angegeben wird. Innerhalb dieser Klausel kann {} (zwei geschweifte Klammern,
ohne Inhalt) als Platzhalter verwendet werden; hier wird dann bei der Abfrage der im Filterfeld
eingegeben Wert eingesetzt. Bei Verwendung von Bedingungsgruppen konnen auch mehrere
dieser clause-Elemente fir einen Filter verwendet werden, ndhere Erklarungen im Abschnitt
Bedingungsgruppen.

ifEmpty

Optional - Eine OQL-Klausel, die in die Datenbankabfrage eingefiigt wird, wenn im Filter kein

24

#solstice_lesezeichen_bedingungsgruppen
#solstice_lesezeichen_query_schablone
#solstice_lesezeichen_query_schablone
#solstice_lesezeichen_bedingungsgruppen

Wert eingegeben wurde oder keine clause definiert wurde.

ittp#HEeprocessor
Optional - In diesem XML-Element kann ein Groovy-Skript angegeben werden, dass die
Benutzereingabe im Filter noch modifizieren kann, bevor sie fir die Datenbankabfrage benutzt
wird. Das Skript wird ausgefiihrt bevor der Platzhalter {} ersetzt wird und muss eine
Zeichenkette zuruckliefern, die dann anstelle der urspriinglichen Benutzereingabe verwendet
wird.

Im Skript stehen zwei vordefinierte Variablen zur Verfugung:

* input - Der im Filterfeld eingegebene Wert als String

* bol - Ein BOLoaderlI

Beispiel fiir einen "string"-Filter, in dem ein oder mehrere durch Komma getrennte Dokumentnummern
eingegeben werden kénnen um Dokumente mit einer der eingegebenen Nummern zu finden:

<Query type="Text">
<filter type="string" title="Dokumentnummern" cols="12">
<clause>Nummer IN LIST({})</clause>
<inputPreprocessor>
// Leerzeichen von den Nummern entfernen, in Hochkommata einschliessen und
wieder als Komma-getrennte Liste zuriickgeben.
input.split(',"').collect{ "'${it.trim()}'" }.join(',")
</inputPreprocessor>
</filter>
</Query>

Beispiel fiir einen "string"-Filter, in dem aus der User Eingabe die Nummer extrahiert und mit einem Prefix
fiir die Suche versehen wird:

<Query type="Text">
<filter type="string" title="Dokumentnummern" cols="12">
<clause>Nummer = "{}"</clause>
<inputPreprocessor>
// RegEx fir Nummern
def number = /\d+/
def matcher = (input =~ number)
// Falls eine Nummer eingegeben wurde, diese extrahieren und mit dem Prefix
'D' versehen fiir die Eingabe zuriickgeben
matcher.find() ? "D ${matcher[0]}" : input
// Alternativ als Einzeiler.
// (input =~ /\d+/).findResult{ "D $it" } ?: input
</inputPreprocessor>
</filter>
</Query>

25

Eingabefelder fiir Zahlen (type="decimal")

In "decimal”-Filtern konnen Zahlen angegeben werden, die in der Suche verwendet werden sollen.
Im Gegensatz zu "string"-Filtern, bei denen die Eingabe unverdndert und ungeprift itbernommen
wird, wird bei "decimal"-Filtern versucht, die Eingabe als Zahl zu interpretieren; falls das nicht
moglich ist, wird eine Fehler angezeigt.

Folgende XML-Attribute konnen speziell fiir "decimal"-Filter benutzt werden:

cols

Optional - Die bevorzugte Breite des Eingabefeldes, in Zeichen.
Folgende XML-Kindelemente konnen speziell fiir "decimal"-Filter benutzt werden:

clause

Verpflichtend - Die OQL-Klausel, die in die Datenbankabfrage eingefiigt wird, wenn in diesem
Filter ein Wert angegeben wird. Innerhalb dieser Klausel kann {} (zwei geschweifte Klammern,
ohne Inhalt) als Platzhalter verwendet werden; hier wird dann bei der Abfrage der im Filterfeld
eingegeben Wert eingesetzt. Bei Verwendung von Bedingungsgruppen konnen auch mehrere
dieser clause-Elemente fiir einen Filter verwendet werden, ndhere Erklarungen im Abschnitt
Bedingungsgruppen.

ifEmpty
Optional - Eine OQL-Klausel, die in die Datenbankabfrage eingefiigt wird, wenn im Filter kein
Wert eingegeben wurde oder keine clause definiert wurde.

Eingabefelder fiir Datumswerte (type="date")

In "date"-Filtern konnen Datumswerte eingeben werden, die in der Suche verwendet werden
sollen. Ahnlich wie bei "decimal"-Filtern wird auch hier gepriift, ob die Eingabe, ausgehend von
einem definierten Eingabeformat, als ein korrekter Datumswert interpretiert werden kann.

Folgende XML-Attribute konnen speziell fiir "decimal"-Filter benutzt werden:

cols

Optional - Die bevorzugte Breite des Eingabefeldes, in Zeichen.

replace

Optional - Wenn "true" (der Standardwert), wird die Benutzereingabe im Eingabefeld (FIXME
wann?) ersetzt durch das angegebene Datum, aber formatiert mit dem Datumsformat wie es bei
format spezifiziert ist. Mit "false" wird die Benutzereingabe beibehalten exakt wie sie eingegeben
wurde.

format

Optional - Wenn angegeben wird hierdurch eine Standardformatierung definiert, in der
Datumswerte - zusdtzlich zu allen sonstigen Formaten (FIXME erkldren) - im Feld eingegeben
werden konnen. Ist replace aktiviert, wird die Benutzereingabe umformatiert, so dass sie dem
hier gegebenen Format entspricht.

26

#solstice_lesezeichen_bedingungsgruppen

quickLookup
foliB* M

strictFormat

Ahnlich wie bei format wird hier Standardformatierung definiert, in der Datumswerte im Feld
eingegeben werden konnen. Wird allerdings strictFormat benutzt, wird nur diese Formatierung
unterstuitzt, kein anderes Format ist dann erlaubt. Ist replace aktiviert, wird die Benutzereingabe
umformatiert, so dass sie dem hier gegebenen Format entspricht.

Folgende XML-Kindelemente kdnnen speziell fiir "string"-Filter benutzt werden:

clause

Verpflichtend - Die OQL-Klausel, die in die Datenbankabfrage eingefiigt wird, wenn in diesem
Filter ein Wert angegeben wird. Innerhalb dieser Klausel kann {} (zwei geschweifte Klammern,
ohne Inhalt) als Platzhalter verwendet werden; hier wird dann bei der Abfrage der im Filterfeld
eingegeben Wert eingesetzt. Bei Verwendung von Bedingungsgruppen konnen auch mehrere
dieser clause-Elemente fiir einen Filter verwendet werden, ndhere Erklarungen im Abschnitt
Bedingungsgruppen.

ifEmpty
Optional - Eine OQL-Klausel, die in die Datenbankabfrage eingefiigt wird, wenn im Filter kein
Wert eingegeben wurde oder keine clause definiert wurde.

format

FIXME (weitere, zusatzliche Eingabeformate definieren)

Checkboxen zur Ja/Nein/Egal-Auswahl

BoolFilterGUI when 'ifTrue' then do when 'ifFalse' then do when 'ifNull' then do
Ein Boolescher Filter erscheint als Checkbox.

Beispiel Checkbox-Filter:

<Query type="Text">
<filter type="bool" title="nur mdnnlich">
<ifTrue>
Geschlecht.Tid
</1fTrue>
<ifFalse>
Geschlecht.Tid
</ifFalse>
<ifNull>
Geschlecht
</ifNull>
</filter>
</Query>

"MAENNLICH"

"WEIBLICH" or Geschlecht.Tid = "NA"

null

Das Query-Tag enthéalt hier einen Filter, der auf Wunsch alle weiblichen (eigentlich: alle nicht-

27

#solstice_lesezeichen_bedingungsgruppen

mannlichen) Personen herausfiltert.

@© Ereignisse (Kopie)

|7 nur mannlich v/

BO-Typ Anfang ¥ | Ende ¥ Dauer Patient | Autaor | |
Arztbesuch 24,10.2014 14:00:00 24,10.2014 16:30:00 Patient Mustermann, Max [1004581... |
Arsthasicrh N1 1n 2014 nn-nn-nn n21n 2014 20245/ Patiant Muctarmann Max [1004521 Schmidt Reniamin [1A04R4021

Auswahlboxen zur Auswahl aus mehreren Optionen

MultipleChoiceFilterGUI
when 'nullable' then -- deprecated, replaced by "nullChoice"
when 'nullChoice' then
when 'nullChoiceTitle' then
when 'sort' then
when 'preselectIdx' then
when 'clause’ then
when 'choice’ then
when 'choiceScript' then
when 'choiceQuery' then
when 'setupScript' then

Ein Multiple-Choice-Filter erscheint in seinem Formular als Combo-Box.

Statische Multiple-Choice-Filter

Beispiel statischer MultipleChoice-Filter:

<Query type="text">
<filter type="multipleChoice" title="Auswahl">
<choice title="Alle"></choice>
<choice title="Nur Rechnungen">Bot.Name = "Rechnung"</choice>
<choice title="Nur Direktverkaeufe">Bot.Name = "Direktverkauf"</choice>
</filter>
</Query>

Beispiel statischer MultipleChoice-Filter mit vordefinierter identischer WHERE-Klausel:

<Query type="text">
<filter type="multipleChoice" title="Auswahl">
<clause>Bot.Name="{}"</clause>
<choice title="Alle"></choice>
<choice title="Nur Rechnungen">Rechnung</choice>
<choice title="Nur Direktverkaeufe">Direktverkauf</choice>
</filter>
</Query>

Hier agiert {} in der clause als Platzhalter fiir einsetzbare Werte, die in choice-Tags angegeben sind.
Bei "Alle" (leeres Tag) erhélt es eine Wildcard-Funktion.

28

Beispiel MultipleChoice-Filter mit SQL-Funktionen (hier Datumsberechnung):

<Query>
<filter type="multipleChoice" title="$R{Geschrieben}">
<choice title="$R{seitHeute}"><![CDATA[
age(date_trunc("day", BuchungsDatum))<"1 days"
11></choice>
<choice title="$R{seitGestern}"><![CDATA[
age(date_trunc("day", BuchungsDatum))<"2 days"
11></choice>
<choice title="$R{letzteWoche}"><![CDATA[
age(date_trunc("day", BuchungsDatum))<"7 days"
11></choice>
<choice title="$R{letztenMonat}"><![CDATA[
age(date_trunc("day", BuchungsDatum))<"30 days'
11></choice>
<choice title="$R{irgendwann}"/>
</filter>
</Query>

Dynamische Multiple-Choice-Filter mit choiceQuery

Es ist auch moglich, dynamische Multiple-Choice-Filter mit Hilfe einer Query anzugeben.

Beispiel dynamischer MultipleChoice-Filter:

<Query>
<!-- Liste enthaelt alle Filialen mit gesetzter Tid und zeigt in der Liste den
Kurznamen der Filiale an -->
<filter type="multipleChoice" title="Filiale">
<choiceQuery query="Filiale a WHERE Not Ldel And Not is_undefined(Tid)"
format="Kurzname">
Filiale.Kurzname = "{Kurzname}"
</choiceQuery>
</filter>
</Query>

Das Resultat der choiceQuery wird Wert fiir Wert als Filtereintrage im Formular angezeigt. Statt der
Angabe eines "choice-title" werden die Resultate mittels des "format"-Attributs formatiert und als
Auswahlwerte angezeigt.

Abhdngigkeiten fiir dynamische Multiple-Choice-Filter mit choiceQuery

Multiple-Choice-Filter, die ihre Werte per choiceQuery ermitteln, konnen Abhédngigkeiten zu
anderen Filtern definieren und aufgrund der darin gesetzten Werte ihre eigene Auswahl
modifizieren.

Die Abhédngigkeiten werden mittels des Attributs dependsOn angegeben. Es konnen ein oder durch
Komma getrennt auch mehrere andere Filter liber ihren Namen als Abhédngigkeiten definiert
werden.

29

Andert sich der Wert in einem Filter, von dem man abhangig ist, so werden die Werte automatisch
aktualisiert.

Per Attribut dependsOnQuery wird die Query angegeben, mit der die Werte ermittelt werden,
inklusive der aktuell gesetzen Werte in den Filtern, von denen man abhéngig ist. In die
dependsOnQuery konnen die Werte aus den anderen Filtern tiber ihren Namen eingesetzt werden,
indem man den Namen des Filters in geschweifte Klammern {...} schreibt.

Das gleiche gilt fir das Attribut dependsOnDefaultQuery, das zur Ermittlung des Default-Wertes
inklusive der aktuell gesetzen Werte in den Filtern dient.

Beispiele dynamischer MultipleChoice-Filter mit Abhdngigkeiten:

30

<Table entity="Lagerplatz">
<Query type="Text">
<filter name="Halle" type="multipleChoice" title="$R{Halle}">
<choiceQuery query="Halle bo WHERE Not Ldel ORDER BY Name">Regal.Halle.Id =
{Id}</choiceQuery>
</filter>
<filter type="multipleChoice" title="$R{Regal}" dependsOn="Halle">
<choiceQuery query="Regal bo WHERE Not Ldel ORDER BY Nummer"
dependsOnQuery="Regal bo WHERE Not Ldel AND Halle.Id = {Halle} ORDER BY Nummer">Regal
= {Id}</choiceQuery>
</filter>

<Query type="Text">
<filter name="Maschine" type="multipleChoice" title="$R{Maschine}">
<choiceQuery query="Maschine a where not Ldel order by Name">
exists (within MaschinenPositionen p where p.Maschine.Id = {Id})
</choiceQuery>
</filter>
<filter type="multipleChoice" title="$R{MaschinenFehlercode}" dependsOn="Maschine">
<choiceQuery query="MaschinenFehlercode a where not Ldel
and (Inaktiv = null or not Inaktiv)
and MaschinenUnabhaengig
order by Name"
dependsOnQuery="MaschinenFehlercode a where not Ldel
and (Inaktiv = null or not Inaktiv)
and (exists (within Maschinen m where m.Id={Maschine})
or MaschinenUnabhaengig)
order by Name">
MaschinenFehler = {Id}
</choiceQuery>
</filter>

Momentan wird fiir die gesetzten Werte in Multiple-Choice-Filtern, von denen man
o abhéngig ist, nur die Id und nicht das BO selbst eingesetzt. Dies wird sich noch
andern.

Die Notation ist noch verldufig und kann sich nochmals dndern. Insbesondere
fehlt die Moglichkeit, fir gesetzte NULL-Werte in anderen Filtern abweichende

o Klauseln angeben zu konnen, was oftmals jedoch ndétig ist. Oftmals hilft eine
Konstruktion, bei der man in der dependsOnQuery, die den Wert eines anderen
Filters benutzt, zusétzlich eine Klausel "or '{Maschine}' = 'NULL' hinzufugt.

Dynamische Multiple-Choice-Filter mit choiceScript

Beispiel dynamischer MultipleChoice-Filter mit Skript:

<Query>
<!-- Liste soll nur Kunden zur Auswahl enthalten, von denen es auch eine Rechnung
gibt -->
<filter type="multipleChoice" title="Kunde">
<clause>Kunde.AbstraktePerson.Name1 = "{}"</clause>
<choiceScript language="groovy">
def erg = new TreeSet()
_bol.queryBO("SELECT a.Kunde.AbstraktePerson.Name1 FROM Rechnung a WHERE NOT Ldel
ORDER BY Kunde.AbstraktePerson.Name1").each{
erg.add(it)
}
return new ArraylList(erqg)
</choiceScript>
</filter>
</Query>

Weiteres Beispiel dynamischer MultipleChoice-Filter mit Skript:

<Query>
<!-- Liste enthaelt immer die letzten 10 Jahre -->
<filter type="multipleChoice" title="Jahr">
<clause>date_part("year",$IP{attrDatum})={}</clause>
<choiceScript language="groovy">
def cal = Calendar.getInstance()
cal.setTime(new Date())
def year = cal.get(Calendar.YEAR)
def list = []
(0..9).each{ list.add(String.valueOf(year - it)) }
return list
</choiceScript>
</filter>
</Query>

Trenner

Bei Trennern handelt es sich um ein GUI-Element um verschiedene interaktive Filter optisch zu
gruppieren und voneinander abzugrenzen. Trenner dienen lediglich dem Layout und haben auf
die Abfrage keinen Einfluss.

31

Trenner werden mit dem seperator-XML-Element definiert und konnen wie ein Label (siehe Sektion
zu Formularen) konfiguriert werden. Die Standard-Konfiguration vergrofiert die Schrift um 10%
und hinterlegt das Label mit einem grauen Farbverlauf.

Alle nach einem seperator-XML-Element definierten Filter werden optisch zusammengefasst; durch
einen Klick auf den Trenner konnen alle zugehorigen Filter-Komponenten dann nach Wunsch
zusammen aus- und eingeblendet werden.

Id |d Object Type Nr & Bemerkung Vorschaubild

299213019 Stein 'I
303662043 Stein

303664151 Stein
303665644 Stein
303667386 Stein
303667498 Stein
322015549 stein
322151063 Stein
322160502 Stein
322293269 Stein

<separator text="Artikeleigenschaften" icon="/20x20/Box.qgif"/>
<filter...

<separator text="Verkauf2" collapsed="true"/>
<filter...

<separator prefSize="200c"
text="Verkauf"
fontSize="+10%"
gradientStartColor="160 160 255"
gradientStopPosition="SOUTH"/>

OQL-Klauseln

Hierbei handelt es sich um eine Funktionalitdt fiir fortgeschrittene Benutzer, die
uber die internen Datenstrukturen der Objekte und die Mdoglichkeiten von OQL
Bescheid wissen.

Neben einfachen Suchbegriffen konnen in der Eingabezeile auch direkt OQL-Klauseln eingegeben
werden, welche dann in die letztendlich auf der Datenbank ausgefiihrte OQL-Abfrage integriert
werden.

Solche Suchanfragen werden mit [(einer offenen eckigen Klammer) eingeleitet.

Beispiele

Wo: In einem Lesezeichen fir "Personen”
Fragestellung: Personen, die nach einem bestimmten Datum (und Uhrzeit) geboren sind

32

[Geburtsdatum >= "1999-12-24 08:00"

Wo: In einem Lesezeichen fiir "Kunden"
Fragestellung: Kunden, die im Land "Deutschland" residieren

[Land.Name = "Deutschland"

Wo: In einem Lesezeichen fir "Kunden"
Fragestellung: Kunden, die in "Deutschland" oder "Luxemburg" residieren

[Land.Name = "Deutschland"” OR Land.Name = "Luxemburg"
Alternativ

[Land.Name In List ("Deutschland", "Luxemburg")

Wo: Lesezeichen fiir "Lander"
Fragestellung: Dopplersuche nach Landern mit gleichem Namen

[exists(Land b where not b.LLdel and b != a and b.Name = a.Name)

Wo: Lesezeichen fur "Lander”
Fragestellung: Dopplersuche nach Landern mit gleichem Namen, "Original" (was zuerst angelegt
wurde) nicht anzeigen

[exists(Land b where not b.Ldel and b != a and b.Name = a.Name AND b.Crea < a.Crea)

Volltextsuche auf zusatzliche Felder ausdehnen

o Hierbei handelt es sich um eine Funktionalitdt fiir fortgeschrittene Benutzer, die
uber die internen Datenstrukturen der Objekte Bescheid wissen.

Die Volltextsuche kann erweitert werden, so dass sie nicht nur die direkten Felder (Attribute) der
Objekte durchsucht, sondern auch Felder von weiteren Objekten, die wiederum direkt mit den
Objekten aus dem Lesezeichen verkniipft sind.

Hierzu muss in der XML-Definition des Lesezeichens das <Query>-Element erweitert werden. Mit
Hilfe des Elements <addProperty> kann ein weiteres, "indirektes" Attribut in die Suche einbezogen
werden.

33

Beispiel, das zusdtzlich die Suche nach dem Namen des Objekttyps ermoglicht:

<Query type="Text">
[...]
<addProperty>Bot.Name</addProperty>

[...]

</Query>

Fest eingestellte Filter

Manche Lesezeichen haben bereits vordefinierte, fest eingestellte Filterbedingungen die zusatzlich
zu allen manuell eingegebene Filterbedingungen immer greifen. Diese sind immer aktiv und
konnen nur durch Bearbeiten der XML-Definition des Lesezeichens deaktiviert werden.

Diese Filter werden definiert in <filter>-Kindelementen (ohne das Attribut type) des <Query>
-Elements. Ahnlich wie bei der Suche mit OQL-Klauseln werden auch hier zusétzliche OQL-
Schnipsel definiert, welche dann in die letztendlich auf der Datenbank ausgefiihrte OQL-Abfrage
integriert werden.

Beispiel: Zeige auf jeden Fall nur Eintrdige, die beim Offnen des Lesezeichens nicht dlter als einen Monat
sind:

<Query type="Text">
[...]
<filter>
<I[CDATA[age(Crea) < "1 month" JI> @
</filter>

[...]
</Query>

@ Weil im Filter ein Kleiner-Zeichen < vorkommt, steht er in einer CDATA-Sektion. Alternativ
konnte man auch <filter>age(Crea) < "1 month"</filter> schreiben. Dies ist lediglich
aufgrund der allgemeinen Erfordernisse von XML notwendig und hat nichts mit dieser
Filterdefinition speziell zu tun.

Diese Filterdefinition unterstiitzt nur ein einziges (optionales) XML-Attribut zur Konfiguration: Wie
bei anderen Filtern auch kann der Filter mit dem group-Attribut einer Bedingungsgruppe
zugeordnet werden.

Als Alternative (ebenfalls optional) konnen, wie z.B. bei den "string"-Filtern, stattdessen auch
mehrere clause-XML-Kindelemente benutzt werden, falls der Filter in unterschiedlichen
Bedingungsgruppen verwendet werden soll.

Falls eine eigene Query-Schablone verwendet wird, konnten statt eines solchen
Filters natiirlich die entsprechenden OQL-Klauseln auch direkt in der Schablone

o angegeben werden. Durch Benutzung des filter-Elements wird die Schablone
aber uUbersichtlicher gehalten und das Bearbeiten der Filterdefinition ist u.U. etwas
einfacher.

34

#solstice_lesezeichen_oql_klauseln
#solstice_lesezeichen_bedingungsgruppen
#solstice_lesezeichen_stringfilter
#solstice_lesezeichen_query_schablone

Eigene Query-Schablone

Hierbei handelt es sich um eine Funktionalitat fiir fortgeschrittene Benutzer, die
uber die internen Datenstrukturen der Objekte und die Moglichkeiten von MEX
und OQL Bescheid wissen.

Im Normalfall verwenden die Lesezeichen zum Abfragen der Objekte eine Standard-OQL-Query
der Form SELECT a FROM <Typ> WHERE <Constraints>.

Es ist jedoch auch mdoglich, komplexere Query-Formen zu definieren, z.B. um die erweiterten MEX-
Moglichkeiten von Subqueries zu nutzen und z.B. die Objekte von zwei verschiedenen Untertypen
mit leich verdnderten Klauseln abzufragen.

Hierzu kann mit dem template-Kindelement eine eigene MEX-Query-Schablone definiert werden.

Beispiel: Von SubtypA nur Objekte mit Name "EinName" anzeigen aber von SubtypB nur solche bei denen in
der Beschreibung "entfernt"” vorkommt

<Query type="Text">
[...]
<template>
{=select} SubtypA {=where} {=constraints} AND Name = "EinName"
{Union {=select} SubtypB {=where} {=constraints} AND Beschreibung ilike
"%entfernt%"
</template>

[...]

</Query>

Bedingungsgruppen ("constraint groups")

Lesezeichen (bzw. eigentlich generell die MyTISM-eigene Tabellenkomponente) bieten die
Moglichkeit, die durch Filter etc. definierten Bedingungen unterschiedlichen Bedingungsgruppen
zuzuordnen. Dies ist insb. bei Benutzung des "Union"- bzw. "UnionAll"-MEX-Konstrukts nitzlich, bei
dem im Prinzip zwei oder gar mehr einzelne OQL-Queries zu einem gemeinsamen OQL-Query
zusammengefliigt werden. Bedingungsgruppen ermdoglichen hier, einzelne Bedingungen nur in
einem bzw. nur in einer Untermenge dieser Queries anzuwenden, in den anderen nicht.

Bedingungsgruppen werden einfach dadurch definiert, dass sie in einem Filter angegeben werden
und dann bei Bedarf automatisch angelegt.

35

Beispiel: Union-Query der - neben gemeinsamen Bedingungen ("{=constraints}") die in beiden Teilqueries
gelten - unterschiedliche Bedingungen ("{=constraintsForA}" bzw. "{=constraintsForB}") in den beiden
Teilqueries benutzt

<Query type="Text">
[...]
<template>
{=select} SubtypA {=where} {=constraints} AND {=constraintsForA}
{Union {=select} SubtypB {=where} {=constraints} AND {=constraintsForB}
</template>

[...]
</Query>

Die Zuordnung von Bedingungen, z.B. aus Filtern, zu einer Gruppe erfolgt mit dem group-Attribut,
das an entsprechenden Stellen angegeben wird.

Bei Filtern besteht die Moglichkeit, entweder den gesamten Filter selbst einer Bedingungsgruppe
zuzuordnen oder aber das Filterkriterium in wunterschiedlicher Weise in verschiedenen
Bedingungsgruppen zu verwenden.

Um den ganzen Filter einer Gruppe zuzuordnen wird das group-Attribut im filter-Element direkt
angegeben.

Beispiel in dem die im Filter "Dokumentnummer" eingetragene Bedingung nur fiir die Bedingungsgruppe
"constraintsForA" benutzt wird

<Query type="Text">
<filter type="string" title="Dokumentnummer" cols="30" group="ForA">
<clause>Dokumentnummer = "{}"</clause>
</filter>
</Query>

Wenn die vorher schon genannte Query-Schablone mit "Union" benutzt wird, wird der in diesem
Filter eingegeben Wert nur bei der Abfrage fiir Objekte vom SubtypA berticksichtigt, da nur diese
(Teil-)Abfrage die Bedingungsgruppe "constraintsForA" benutzt; die Abfrage fiir Objekte vom
SubtypB filtert nicht nach diesem Kriterium.

Es ist auch moglich, das Filterkriterium in mehreren Bedingungsgruppen und Abfragen zu
verwenden, aber z.B. in abgewandelter Weise. Hierzu miussen mehrere clause-Kindelemente
definiert werden; fir jedes dieser clause-Kindelemente wird dann bestimmt, in welcher Gruppe es
verwendet werden soll.

36

#solstice_lesezeichen_filter

Beispiel in dem die im Filter "Dokumentnummer" eingetragene Bedingung fiir beide Bedingungsgruppen
benutzt wird

<Query type="Text">
<filter type="string" title="Dokumentnummer" cols="30">
<clause group="ForA">Dokumentnummer = "{}"</clause>
<clause group="ForB">DokumentHeaderinfo.Nummer = "{}"</clause>
</filter>
</Query>

Das obige Beispiel geht davon aus, dass die Dokumentnummer in SubtypA im Attribut
Dokumentnummer zu finden ist, fiir den SubtypB dagegen in dem Attribut Nummer eines aus dem
Dokument referenzierten DokumentHeaderinfo-Objekts. Bei der Suche nach passenden Objekten
missen also die Abfragen leicht unterschiedlich formuliert werden; dies ist mit diesem Verfahren
moglich.

In der (Teil-)Abfrage fir SubtypA in der Query-Schablone wird fir diesen Filter die Klausel
Dokumentnummer = "{}" in die Bedingungsgruppe "constraintsForA" eingebaut; in der (Teil-)Abfrage
fir SubtypB wird dagegen die Klausel DokumentHeaderinfo.Nummer = "{}" in der Bedingungsgruppe
"constraintsForB" benutzt.

Falls fiir eine in der Query-Schablone benutzte Gruppe kein entsprechender clause-Eintrag dieser
Gruppe zugeordnet wurde, wird fiir diese Gruppe auch keine Klausel in die Abfrage eingefiigt. Die
Bedingungsgruppen koénnen allerdings trotzdem immer in der Form "... AND
{=constraints<Gruppenname>}" in der Schablone verwendet werden; sollten fiir eine
Bedingungsgruppe keine Bedingungen definiert worden sein - weil Kkein Filter dieser Gruppe
zugeordnet wurde oder keiner der zugeordneten Filter vom Benutzer genutzt wurde - so wird
automatisch eine Dummy-Klausel "(1 = 1)" eingefiigt, die in diesem Fall syntaktisch korrektes OQL
garantiert aber keine wirklichen Auswirkungen auf die Abfrage hat.

Massenanderungen / Skripting

Aus jeder Tabellenansicht (also Lesezeichen und Table-Popups bzw. Anzeigen in Formulare mit 1:n-
Beziehung) heraus kann man sehr einfach Massendnderungen durchfiihren, d.h. eine oder
mehrere Eigenschaften mehrerer BOs auf einmal dndern.

Hierfur markiert man in der Tabellenansicht die zu dndernden Datensdtze (oops, sorry, Objekte)
und ruft mit der rechten Maustaste das Kontextment auf.

Man hat nun die Moglichkeit, die Anderung mit dem Formular oder per Skript durchzufiihren. Gibt
man in einem oder mehreren Feldern des Formulars einen Wert bzw. Werte ein, werden diese
beim Speichern auf alle markierten Objekte angewendet. So werden z.B. auch bei hinzugefligten
und neu angelegten Objekten diese kopiert und an jedes markierte Objekt angehangen.

Beispiel: an mehrere Rechnungen soll ein Artikel als Rechnungsposten angehangen werden. Die
betroffenen Rechnungen werden markiert und mittels des Massenanderungsformulars wird der
besagte Artikel als Rechnungsposten angehangen. Nach abgeschlossener Massendnderung findet
sich dieser Rechnungsposten als jeweils eigener Datensatz (Objekt) an allen markierten
Rechnungen.

37

Mit dem Skript erdffnen sich per BeanShell-Programmierung weitaus grossere und komplexere
Moglichkeiten. Neben den BeanShell-Befehlen stehen noch Funktionen aus den automatisch
generierten Klassen zur Verfugung (zu finden in .PROJEKT/classes/de/PROJEKT/bo/).

Beispiel (um Projekteintrdge an ein anderes Projekt zu hdngen, aus der OAshi-Applikation
"OAshi.Venice")

//
//
//
//
//
//
//
//
//
//
//
//
//

Bitte modifizieren Sie dieses vorgefertigte Script nach Ihren Wuenschen

bo.
bo.
bo.
.Ldel = (Boolean) ;
.Bot = // (BOT) ;

bo.

bo
bo

bo

Id = (Long) ;
Crea = (Datetime) ;
Lmod = (Datetime) ;

addDateien((Datei));

.removeDateien((Datei));
bo.
bo.
bo.
bo.
bo.

Tid = (String) ;

Mitarbeiter = // (Mitarbeiter) ;
Datum = (Datetime) ;

Daver = (Integer) ;

Kunde = // (Kunde) ;

prjs = ctx.queryBO("select bo from de.m.bo.Projekt bo where bo.Kuerzel = \"tapla\"");
bo.Projekt = prjs.get(0);

// bo.Beschreibung = (String) ;

// bo.BemerkungIntern = (String) ;

// bo.Kostenstelle = // (Kostenstelle) ;

// bo.InRechnungStellen = (Boolean) ;

38

Wenn man Objekte in Relation bringt oder aus der Relation entfernt mittels
add/remove, so werden diese Anderungen "blind" geloggt. D.h. es wird nicht
vorher Uberprift, ob das BO, was man in Relation bringen will, bereits Teil der
Relation ist, bzw. ob das BO, was man aus der Relation entfernen will, gar nicht
Teil der Relation ist.

Dies birgt zwei Probleme:

1. Die Historie / das Log des BO weist "falsche" Eintrage auf und erweckt ggfs. den
Eindruck, dass der alte Zustand vor der Anderung ein anderer gewesen sei.
Man muss also genau hinschauen, ob der suggerierte Zustand vor der
Massendnderung wirklich so vorgelegen hatte, oder ob da effektiv "nichts"
o hinzugefligt oder entfernt wurde.

2. Bei einem undo einer solchen Massendnderung wird ein falscher Zustand
hergestellt, der nicht dem Zustand vor der Massenanderung entspricht, da ggfs.
ein Objekt in Relation gebracht wird, das gar nicht entfernt worden war, da es
vorher gar nicht in Relation stand.

Das gleiche Problem besteht natiirlich bei allen programmatisch vorgenommenen
add/remove Anderungen an BOs.

Eine Losung des Problems kann momentan nicht ohne erhebliche Performance-
Einbufien wegen Unlazying programmiert werden, wird aber im Zuge des Projekts
bertucksichtigt werden, in dem wir Castor durch ein neues, besseres, selbst
entwickeltes JDO-Data-Binding-Framework ersetzen werden.

"Transform Scripts" fiir die Abfrageresultate

Es ist mogliche Skripte zu definieren, die wihrend des Ladens auf bestimmte oder alle
zuruckgelieferten Resultate (Objekte) der Abfrage angewendet werden.

In diesen Skripten kdnnen dann z.B. virtuelle Attribute gesetzt werden, deren Wert dann wiederum
in Filtern benutzt werden kann. FIXME really?

Skripte werden mit transform-script-Kindelementen des Query-Elements definiert. Es kdnnen
beliebig viele dieser Skripte definiert werden.

Da das Skript fiir ggf. sehr viele oder gar alle Eintrédge ausgefihrt wird, kann das
A die Performance beeintrachtigen. Lange, aufwindige Berechnungen oder
Ahnliches sollten in solchen Skripten also keinesfalls durchgefiihrt werden.

Folgende Variablen sind in diesen Skripten vorbelegt:

bo

Das aktuell betrachtete Objekt aus der Ergebnismenge, fiir welches das Skript gerade ausgefiihrt
wird.

tag

39

Der sog. Tag, der fiir das aktuelle Resultat (Objekt) definiert wurde. Kann - nur? - mittels des
{Union @MeinTag +-MEX-Query-Konstrukts definiert werden; alle Resultate, die dann von
diesem Teil des Queries zurtckgeliefert werden, bekommen den nach @ genannten Tag
zugewiesen.

Beispiel in dem sich jedes Objekt im Hilfsattribut "Badge" merkt, aus welchem Union-Query es
zurltickgeliefert wurde

<Query type="Text">

[...]
<template>
only BO a where "dummy'!="for Badge'
{Union @Eingeloest a.AusgezahltIn from Bonuskarte {=where} {=constraints}}

{Union @Angespart a.GeschaeftsVorfaelle from Bonuskarte {=where} {=constraints}}
</template>

<transform-script>
bo.Badge = tag
</transform-script>

[...]

</Query>

Folgende XML-Attribute konnen fir das transform-script-Element angegeben werden:

language
Optional - Welche Programmiersprache fir das Skript genutzt werden soll; Standard und bisher
eigentlich einzig unterstiitzt wird groovy.

onTag

Optional - Fir Resultate mit welchem Tag (s.0.) das Skript ausgefiihrt werden soll; Standard ist *
was das Skript fiir alle Resultate, unabhdngig von einem evtl. gesetzten Tag ausfuhrt.

Das Query-Element

Die meisten moglichen Angaben zur Konfiguration wurden bereits weiter oben beschrieben; hier
noch kurze Erklarungen zu den moglichen aber noch nicht erwdhnten Optionen.

Folgende XML-Attribute konnen im Query-Element angegeben werden:

entity
FIXME ?7?

fieldWidth

Optional - Die bevorzugte Breite des Text-Suchfeldes in Zeichen.

40

minSearchLength
FIXME ?7?

projection
FIXME ?7?

showDeleted

Optional - Hier kann mit einem Boolean-Wert "true" oder "false" (der Standardwert) angegeben
werden, ob auch als geldscht markierte Objekte im Lesezeichen angezeigt werden sollen oder
nicht.

showFtsPopup

Optional, obsolet - Definiert, dass im Suchfeld Suchvorschldge fiir die veraltete "Compass"-
Volltextsuche gezeigt werden sollen. Wird nicht mehr weiter unterstiitzt und fallt irgendwann
komplett weg.

type
Unterstiitzt werden zwei Formen von Queries:

e Text: Die Standardform FIXME Alternativ erreichbar indem, statt des Query-Elements das
TextQuery-Element genutzt wird.

* Free oder Raw: Hier kann bzw. muss direkt ein vollstindiger OQL-Query eingegeben werden.
Alternativ erreichbar indem, statt des Query-Elements das FreeQuery-Element genutzt wird.

Folgende Kindelemente kann das Query-Element haben:

transform-script

Optional, kann mehrfach verwendet werden - Siehe Abschnitt tiber "Transform Scripts"

addProperty

Siehe Abschnitt tiber zuséatzliche Felder fiir die Suche

filter
Siehe Abschnitt uiber Filter

template

Siehe Abschnitt Giber eigene Query-Schablone

separator

Siehe Abschnitt iber Trenner

Abfrage von Entitidten die ein bestimmtes Interface implementieren

Ein spezieller Parameter, der etwas mehr Erklarung bendtigt, ist withInterface (Optional).
Mit dieser Einstellung kann definiert werden, dass nur die Objekte gesucht werden, deren Typ ein
bestimmtes Schema-Interface (siehe Entwickler-Dokumentation) implementiert.

Beispiel

41

#solstice_lesezeichen_transform_scripts
#solstice_lesezeichen_zusaetzliche_felder
#solstice_lesezeichen_filter
#solstice_lesezeichen_query_schablone
#solstice_lesezeichen_trenner

Diverse Entitdten - Benutzer, MyTISMAdresse, Gruppe, .. - konnen als Empfanger flr
Benachrichtigungen benutzt werden. Deswegen implementieren sie alle das (Schema-)Interface
Notifiablel. Allerdings leiten diese Entitdten sich alle von anderen Basis-Entitdten ab.

Soll nun - z.B. in der Solstice-GUI - es moglich sein, Empfianger fir Benachrichtigungen
auszuwahlen, dann sollen in der Auswahlliste natiirlich Objekte all dieser moglichen Typen
gemeinsam aufgelistet sein. Das kann mit folgender Definition erreicht werden:

<Table entity="CoreB0" columns="Bot | Id | .">
<Query type="Text" withInterface="Notifiablel"/>

</Table>

Das fiihrt dazu, dass bei einer Abfrage alle Objekte vom Typ CoreBO (oder einer der Subtypen dieser
Entitdt) durchsucht werden, die das angegebene Interface Notifiablel implementieren - also genau
halt Benutzer, MyTISMAdresse, usw. Die passenden Objekte werden alle in einer gemeinsamen Liste
angezeigt.

CoreBO ist "der kleinste gemeinsame Nenner" aller relevanten Klassen, d.h. die
Basisklasse, der wirklich alle relevanten Objekt angehoren. In das Suchergebnis
kommen aber dann nur diejenigen Objekte, deren Subklasse auch das Interface

o implementiert.

Wirde stattdessen z.B. Benannt eingetragen, wiirde das Suchergebnis nur Resultate
vom Typ Benutzer oder Gruppe umfassen (beides Untertypen von Benannt). Obwohl
auch MyTISMAdresse das Interface implementiert wiaren Resultate von diesem Typ
nicht im Ergebnis enthalten, da MyTISMAdresse kein Untertyp von Benannt ist.

Benutzung von GUI-Filtern bei Nutzung von withInterface

Da bei Benutzung von withInterface unterschiedliche Entitdten an der Abfrage beteiligt sind
gestaltet sich die Benutzung von GUI-Filtern ein bisschen aufwéandiger als sonst.

Beispiel fiir Benutzung von GUI-Filtern fiir Standardabfragen

<Table entity="Benutzer" columns="Id | Name,ASC | Beschreibung">
<Query type="Text">
<filter name="Email" title="Email" type="string">
<clause>a.(MyTISMAdresseEmail)Adressen.Email ilike '%{}%'</clause>
</filter>
</Query>
</Table>

Im obigen Beispiel werden Benutzer abgefragt; ein GUI-Filter "Email" ermdglicht die Suche nach
Benutzern mit bestimmten Email-Adressen.

Da nur eine Entitat - Benutzer - beteiligt ist, bendtigt der Filter nur eine einzige <clause>-Angabe, die
definiert, welche zusétzliche OQL-Bedingung in den Query eingebaut werden soll. Es ist bekannt,
wo die Information zu Email zu finden ist (vereinfacht gesagt im Attribut Benutzer.Adressen.Email)
und da die Objekte alle vom gleichen Typ sind ist diese Bedingung nattirlich auch fir alle Objekte
gultig.

Wenn die Einstellung withInterface benutzt wird sind aber plotzlich Objekte von mehreren
unterschiedlichen Typen beteiligt. Je nach Objekttyp kann sich die Information tiber die Email-

42

Adresse an einer ganz anderen Stelle befinden. Deswegen muss es jetzt moglich sein, je nach
Objekttyp eine andere <clause> anzugeben, die spezifisch fiir diesen Objekttyp definiert, wie die
Bedingung abgefragt werden soll.

Beispiel fiir Benutzung von GUI-Filtern mit withInterface

<Table entity="CoreB0" columns="Bot,ASC | Id,ASC | .">
<Query type="Text" withInterface="NotifiableI">
<filter name="Email" title="Email" type="string">
<clause group="Benutzer">a_Benutzer.(MyTISMAdresseEmail)Adressen.Email ilike
"%{}%'</clause>
<clause group="Person">EXISTS (WITHIN
StandardKontakt.KommunikationsMoeglichkeiten k WHERE NOT k.Ldel AND
k.KommunikationsMittel.Name = "Email' AND k.Wert ilike '%{}%')</clause>
<clause group="MyTISMAdresseEmail">Email ilike '%{}%'</clause>
</filter>
</Query>
</Table>

Im obigen Beispiel "sucht" der Filter die Information zur Email-Adresse, je nachdem ob das aktuell
betrachtete Objekt vom Typ Benutzer, vom Typ AbstraktePerson oder vom Typ MyTISMAdresseEmail ist
jeweils an einem anderen, fir den jeweiligen Typ passenden "Ort".

* Fur welchen Objekttyp die <clause>-Anweisung jeweils gedacht ist wird durch das group-XML
-Attribut angegeben; hier muss der genaue Name des Objekttyps eingetragen werden.
Technische Erklarung: Bei Benutzung von withInterface wird automatisch fiir jeden Typ eine
passende Bedingungsgruppe angelegt, die den Namen des Objekttyps erhalt. Die OQL-
Bedingung wird durch diese Angabe der entsprechenden Bedingungsgruppe zugeordnet.

» Aufler der Angabe des group-XML-Attributs dhnelt die <clause>-Anweisung fiir Benutzer sehr der
Anweisung fir den Standardfall im ersten Beispiel. Der wichtige Unterschied ist jedoch, dass im
Standardfall der Standard-Bezeichner "a" benutzt wird. Im Fall von withInterface muss hier
aber jeweils stattdessen der passende Bezeichner "a_<Typname>" benutzt werden.

Flag excludeOtherInterfaces fiir GUI-Filter

Es kann sein, dass bei einer Filterdefinition nicht fir alle Typen, die eigentlich das Interface
implementieren, eine <clause>-Anweisung angegeben wird. Das kann z.B. passieren, wenn spéter
ein neuer Untertyp definiert wird, aber vergessen wird, die Filterdefinition zu erweitern. Da nicht
automatisch bestimmt werden kann, in welcher Weise der Filter auf solche "nicht erwdhnten"
Untertypen angewendet werden soll, wird als Standard angenommen, dass der Filter auf keines der
Objekte dieses Untertyps passt und Resultate von diesem Untertyp werden bei Benutzung des
Filters komplett ausgeblendet.

Falls aber gewtnscht ist, dass solche Resultate trotzdem ins Suchergebnis aufgenommen werden
sollen sofern sie zu allen anderen ggf. angegebene Suchbegriffen oder Filtern passen, kann im der
<filter -XML-Element das XML-Attribut excludeOtherInterfaces="'false' angegeben werden.

FIXME Genauer beschreiben, Beispiele... - tl;dr: Normalerweise sollte die Standardeinstellung
<true> das sein, was man haben will.

43

#solstice_lesezeichen_bedingungsgruppen

Formulare

Formulare sind Eingabemasken, mit deren Hilfe BOs erstellt oder bearbeitet werden konnen. Sie
definieren welche (Eingabefelder fiir welche) Attribute angezeigt werden.

Eingabemaoglichkeiten nach Datentypen

(FIXME Diese Sektion passt eigentlich nicht wirklich hier hin; sollte man spdter mal alles
sauber anordnen ...)

Timespan (Zeitspanne)

FIXME Standardmadassig wird fiir die Eingabe im Solstice jetzt der SimpleTimespanChooser
verwendet, der eine einfachere Eingabe als hier angegeben erlaubt.

Zeitspannen werden intern als Anzahl von Sekunden abgespeichert. Eingegeben werden konnen
jedoch intuitivere Werte wie z.B. eine Anzahl von Minuten, Stunden, Tage etc. Es gibt dafiir grob
drei Gruppen von Formaten:

Altes Standardformat
Dieses Format wird verwendet wenn Kkein spezielles displayFormat angegeben ist.
Beispiele:

* 30s = Dreissig Sekunden

* 10m = Zehn Minuten

* 1d 2h = Ein Tag und zwei Stunden
* 3w = Drei Wochen

* 5y 3M = Fiunf Jahre und drei Monate
Folgende Bezeichner konnen dabei verwendet werden:

Table 1. Eingabe Timespan

Bezeichner Name Entspricht

y Jahr (year) 365d

M Monat (month) 30d

w Woche (week) 7d

d Tag (day) 24h = 1440m = 86400s
h Stunde (hour) 60m = 3600s

m Minute (minute) 60s

S Sekunde (second) 1s

Achten Sie darauf, dass sie bei Benutzung mehrere Bezeichner immer mit den grossten anfangen.

44

Beispiele:

* Richtig: Tm 30s
 Falsch: 30s 1m
* Richtig: 1d 5h 20m
* Falsch: 1d 20m 5h

Achten Sie auch darauf, dass zwischen Zahl und Bezeichner keine Leerzeichen stehen diirfen und
dass der Bezeichner immer nach der Zahl kommen muss.

Beispiele:

* Richtig: Tm 30s
» Falsch: 1 m 30 s
» Falsch: m1 s30

» Falsch: 1 30s
 Falsch: 1x 30s
 Falsch: a1 30s

* Falsch:m 1 30s

Alle eingegebenen Zeitspannen werden automatisch in ein kanonisches, d.h. festgelegtes,
eineindeutiges Format umgewandelt.

Beispiele:

* 55s bleibt 555

e 73s wird zu 1m 13s

* 30h wird zu 1d 6h

* 10d wird zu 1w 3d

* 200w wird zu 3y 10M 5d

e 70m 340s wird zu 1h 15m 40s

e 70M 340s wird zu 5y 9M 5d 5m 40s
e 13y 6M 45d wird zu 13y 7M 2w 1d

"Doppelpunkt”-Format(e)

Dieses Format wird verwendet wenn als displayFormat "HH:mm:ss" bzw. "HH:mm" angegeben ist.
Die Stundenanzahl hat dabei immer mindestens zwei Ziffern, bei Bedarf konnen aber auch mehr
dargestellt/verwendet werden.

Beispiele fir "HH:mm:ss":

* 00:00:30 = Dreissig Sekunden
* 00:10:00 = Zehn Minuten

45

* 26:00:00 = Ein Tag und zwei Stunden
* 504:00:00 = Drei Wochen
* 45960:00:00 = Funf Jahre und drei Monate

"Marker"-Format(e)

Bei diesen Formaten wird die Zeitspanne als nur eine Zahl dargestellt. Ein Marker-Buchstabe im
displayFormat gibt dabei an, in welche Einheit die Zeitspanne umgerechnet bzw. angezeigt wird.

Beispiele fiir Darstellung bzw. akzeptierte Eingaben fiir eine Zeitspanne von 455984 Sekunden mit
verschiedenen displayFormat-Alternativen:

o ###,##0.00s = 455,984.00

o H####0s = 455984

o #####0.00m =7,599.73

o ##H##0mM = 7600

o ###,##0.00h = 126.66

o HH###HON = 127

o #####0.00d = 5.28

o H##AH0d =5
Als Marker erlaubt sind, wie im Beispiel zu sehen, 's' fiir Sekunden, 'm' fiir Minuten, 'h' fir Stunden,

'd' fur Tage, 'w' fiir Wochen, 'M' fiir Monate (= 30 Tage) und 'y' fiir Jahre (= 365 Tage). Bei Aus- oder
Eingabe werden diese Marker-Buchstaben nicht angezeigt bzw. eingegeben.

Als Besonderheit gibt es noch den Marker . Bei Verwendung dieses Markers wird (bei der
Ausgabe) automatisch die "beste" Einheit gewdhlt, d.h. diejenige, bei der eine Zahl >= 1.0
herauskommt. Als Spezialfall wird bei diesemm Format der passende Marker-Buchstabe mit
ausgegeben, bzw. muss bei der Eingabe ebenfalls an die Zahl angehédgt werden, damit die korrekte
Einheit gewahlt werden kann.

Die Zeichen vor dem Marker-Buchstaben sind ein Pattern fir java.text.DecimalFormat, welches flr
die Formatierung der Zahl verwendet wird.

Diverses

* Messagebox erzeugen: ctx.showMessageDialog("bla")

» Sperren von Formularfeldern: dem jeweiligen Feld mit name="ich" einen Namen geben und im
Formular-Code dann: ich.setEditable(false);

* Der Parameter lazy wird in der Formular-Definition im Tab-Tag verwendet (Bsp.: <Tab
lazy="false") und gibt an, ob die Daten die im Formular hinter diesem Tab (Reiter) stecken,
direkt beim Offnen des Formulars geladen werden sollen (lazy="false") oder erst wenn man
den Tab anklickt (lazy="true" - das ist die Standard-Einstellung).

» Farbliches Aussehen der Reiter wird im jeweiligen Benutzer (Formular, Parameter, ganz unten)

46

eingestellt. Diese "Defaults" kommen aus Projekt/gui/Client.nrx (nach "xpath" suchen)

47

Pivot-Modus (Beta) in MyTISM verwenden

Diese Anleitung erklirt, wie Sie in den Pivot-Modus wechseln und diesen in der MyTISM-
Anwendung fir erweiterte Datenanalysen nutzen, welcher auf der JIDE Pivot Library (aktuell in
Version v3.7.13) basiert.

Verfiigharkeit und Vorbereitung

Die Pivot-Modus-Funktionalitat ist systemweit verfigbar:

 Sie kann von jeder Tabelle aus aufgerufen werden, die Daten anzeigt.
¢ Dies schliefdt Tabellen in Formularen und Lesezeichen ein.

Bevor Sie in den Pivot-Modus wechseln, stellen Sie sicher, dass Ihre Basisdaten korrekt geladen und
gefiltert sind:

+ Daten laden: Offnen Sie das Lesezeichen oder Formular mit den spezifischen Daten, die Sie
analysieren mochten.

* Filter anwenden: Nutzen Sie die verfligharen Filteroptionen (z.B. Zeitrdume, Kategorien, etc.),
um die Datensatze einzugrenzen und nur die fiir Thre Analyse relevanten anzuzeigen.

Pivot-Modus starten und beenden

Sie konnen den Pivot-Modus auf zwei Arten ein- und ausschalten:

¢ Tastenkombination: Driicken Sie Alt + P.

Falls die Tastenkombination beim Wechsel nicht sofort funktioniert, missen Sie
moglicherweise zuerst auf ein beliebiges Feld in der Pivot-Ansicht klicken, um
sicherzustellen, dass die Ansicht den Fokus fiir die Tastatureingabe hat.

* Kontextmenii: Klicken Sie mit der rechten Maustaste auf einen beliebigen angezeigten
Datensatz in der Tabelle. Wahlen Sie den Eintrag "Pivot-Modus an/aus (beta)" aus dem
Kontextmend.

Datenanalyse in der Pivot-Ansicht

Sobald Sie sich im Pivot-Modus befinden, wird die Standardtabelle in die Pivot-Tabellenoberflache
umgewandelt:

* Feldliste: Die verfiigharen Datenfelder fiir die Analyse werden angezeigt, typischerweise ganz
rechts auf dem Bildschirm.

* Analysebereiche (Zonen): Ziehen Sie Felder in diese Bereiche, um Ihre Analyse zu
strukturieren:

- Datenfelder (Werte): Dient zur Aggregation der numerischen Werte (z.B. Summen,
Durchschnitte, Zdhlungen).

48

o Zeilenfelder: Dient zur Definition der Zeilen und der hierarchischen Gruppierung der
resultierenden Tabelle.

o Spaltenfelder: Dient zur Definition der Spalten und der Kreuztabelle der resultierenden
Tabelle.

o Filterfelder: Dient zum Anwenden dynamischer Filter auf die gesamte Pivot-Tabelle.

Allgemeine Analyseschritte:

1. Wert definieren: Ziehen Sie das Feld, das den zu berechnenden oder zusammenzufassenden
Wert enthéalt (Ihre Kennzahl), in den Bereich Datenfelder.

2. Struktur definieren: Ziehen Sie die kategorialen oder zeitbasierten Felder, die Sie zur
Gruppierung verwenden mochten (IThre Dimensionen), nacheinander in die Bereiche
Zeilenfelder und/oder Spaltenfelder, um die Struktur fiir Thre Ausgabe festzulegen.

Interpretation der Ergebnisse

Die Pivot-Tabelle berechnet automatisch den aggregierten Wert fiir jede eindeutige Kombination
der Felder, die Sie zur Gruppierung verwendet haben.

* Fehlende Datenpunkte: Wenn eine spezifische Kombination von Gruppierungsfeldern (z.B. ein
bestimmter Produkttyp in einem bestimmten Monat) nicht in der endgultigen Tabelle erscheint,
deutet dies darauf hin, dass keine entsprechenden Daten fiir diese spezifische Gruppe in den
zugrunde liegenden Daten nach der anfanglichen Filterung existierten.

49

Schablonen

Wie in "Grundlagen" bereits beschrieben, dienen Schablonen dazu, neue BOs anzulegen. Eine
Schablone definiert, von welcher Klasse ein neues Objekt erzeugt werden soll und welches
Formular zur Darstellung und Bearbeitung benutzt werden soll. Moglicherweise werden auch
bereits bestimmte Werte in das neu zu erzeugende BO geschrieben.

Die meisten Attribute des Formulars sind aus den anderen Strukturelementen bekannt und/oder
selbsterkldarend. Wichtige spezielle Attribute:

BOTyp
Von welcher Klasse soll ein Objekt erzeugt werden?

Formular

Welches Formular (passend zum BOTyp bitte) soll fiir die Bearbeitung des neuen
Objekts/Eintragen der Werte benutzt werden?

Parameter

Hier kann (per XML) ein Script definiert werden, tiber das z.B. Werte im neuen Objekt bereits
vorbelegt werden. Weitere Konfigurationsmoglichkeiten bzw. Angaben sind hier z.Zt. nicht
moglich.

Erzeugen des neuen Objektes

o vgl. de/ipcon/gui/solstice/Client.openNew()

Im Normalfall wird ein Objekt der angegebenen Klasse (BOTyp, s.0.) einfach durch Aufruf des
entsprechenden No-Argument-Konstruktors erzeugt. Will man aber selber z.B. direkt Werte des
neuen Objektes setzen, kann man die Objekterzeugung mittels Script selbst in die Hand nehmen.
Dazu gibt man als Parameter fiir das Formular ein entsprechendes BeanShell-Script an, welches die
gewlnschten Aktionen durchfiihrt. Das Script muss ein neu erstelltes Objekt der gewtlnschten
Klasse zurtickliefern.

Das Beispiel zeigt den Inhalts des Parameter-Feldes einer Schablone flr
MyTISMBenachrichtigungsAuftrag; wie man sieht konnen so auch andere Objekte direkt mit
erzeugt und konfiguriert werden:

50

<Schablone>
<newlInstance>
ba = tx.include(new MyTISMBenachrichtigungsAuftrag());
ba.setAbsender(ctx.getSession().getUser());
bv = tx.include(new MyTISMBenachrichtigungsVorlage());
bv.setIstEinweg(true);
ba.setVorlage(bv);
return ba;
</newInstance>
</Schablone>

Folgende Variablen sind im Script immer verfugbar (vgl. S.0. und
de/ipcon/gui/BasicClient.initScript()); ggf. konnen aber auch noch weitere Variablen tbergeben
worden sein:

ctx

Der verwendete ClientContextl. FIXME gibt es den wirklich immer?

ftx

Der verwendete FormContext.

tx

Die Transaction, die fiir die Erstellung des Objekts verwendet wird.

Die alte Methode der Definition von Default-Werten im Schema wird aus Kompatibilitdtsgriinden
zwar noch unterstitzt, sollte aber nicht mehr verwendet werden.

31

Reports

Grundlagen

Mittels Reports konnen Sie aus MyTISM heraus Listen oder Dokumente in verschiedenen Formaten
(z.B. PDF) erzeugen. Reports nutzen die Daten von Objekten aus der MyTISM-Datenbank und stellen
diese gemafs dem definierten Vorlage-Layout dar.

Was ist ein Report iiberhaupt?

"Reporting" ist ein Begriff fiir das Erzeugen von strukturierten Dokumenten oder Listen aus Daten
einer Datenbank. Reports unterscheiden sich von einfachem Textfluss durch "Schaltpunkte" wie
Seitengrenzen, Spaltenenden oder Gruppenwechsel, die den Aufbau steuern.

Traditionelle Reports:

Fruher basierten Reports auf einer Matrix aus Spalten (Felder) und Zeilen (Datensétze). Durch
Sortierung entstehen Gruppen.

* Beispiel: Eine Liste von Personen mit Spalten fiir Anrede, Familienname, Rufname etc.

* Gruppierung: Sortierung nach Anrede erzeugt Gruppen "Frau" und "Herr". Weitere Sortierung
nach Familienname innerhalb der Anrede erzeugt Untergruppen (z.B. alle Herren mit
Nachnamen "Miller").

Béander und Gruppenwechsel:

Jede Gruppe kann Kopf- und FufSbdnder erhalten, die um das Detailband (enthéalt die eigentlichen
Daten) herum angeordnet werden. Gruppenwechsel 16sen das Drucken der entsprechenden Fuf3-
und Kopfbéander aus.

 Beispiel: Ein Report mit Gruppierung nach Anrede. Jede Seite fasst maximal 3 Personen.

Report-Titel
Seiten-Kopf "Seite 1"
Gruppen-Kopf "Frau' // Kopfband der Gruppe "Frau"

Details <1> // Detailband mit Daten der ersten Person
Details @
Details @

Seiten-Full "Seite 1"

Seiten-Kopf "Seite 2"

Details @
Details ®
Gruppen-FuB "Frau" // FuBband der Gruppe "Frau"
Gruppen-Kopf "Mann" // Kopfband der Gruppe "Mann"
Details ®

Seiten-Full "Seite 2"

32

Variationen:

* Gruppenwechsel mit Seitenwechsel verbinden: Jede neue Gruppe beginnt auf einer neuen

Seite.

* Kopfband auf jeder Seite drucken: Der Gruppenkopf wird bei jedem Seitenwechsel

wiederholt.

Komplexeres Beispiel:

* Daten: Schrauben mit Eigenschaften Material (M), Kopfart (K) und Durchmesser (D), sortiert

nach M, K, D.

* Gruppen: M und K

» Ausgabe: Der Report zeigt, wie Kopf- und Fufsbander bei Gruppenwechseln reagieren.

Report-Titel

Seiten-Kopf "Seite 1"
Gruppen-Kopf "Blech"
Gruppen-Kopf "Flach"
Details @
Details @
Gruppen-FuB "Flach"
Gruppen-Kopf "Rund"
Details @
Seiten-FuB "Seite 1"
Seiten-Kopf "Seite 2"
Details @
Gruppen-FuB "Rund"

MyTISM-Ansatz:

MyTISM verfolgt einen eigenen Ansatz fiir Reports, der auf der objektorientierten Struktur basiert
und den direkten Zugriff auf Datenbankfelder und virtuelle Eigenschaften ermdglicht. Die Anker-
Definition legt die Struktur fest, komplexe SQL-Queries entfallen.

Reports fir MyTISM werden in XML geschrieben und kénnen mit jedem Texteditor bearbeitet
werden. Fiir eine bessere Ubersicht und Vorschau empfiehlt sich jedoch ein grafischer Editor wie
iReport.

Erstellung eines neuen Reports

1

Erzeugen Sie ein neues Report-Objekt mittels der Schablone /Admins/MyTISM
(Vorgebaut)/Grundelemente/Report (Vorgebaut).

Vergeben Sie einen aussagekraftigen Namen und eine kurze Beschreibung.

Verwenden Sie den Knopf Tid vorschlagen, um einen Kurznamen/externen Schlissel
automatisch zu generieren, oder vergeben Sie einen manuell.

33

https://sourceforge.net/projects/ireport/files/iReport%20%28classic%29/

10.

11.

12.

13.

14.
15.

54

Wahlen Sie den BO-Typ. Dieser definiert, welche Objekte als Datengrundlage fiir den Report
dienen.
Beispiel: Fur einen Report zur Erzeugung von Vertragsdokumenten wéahlen Sie Vertrag.

Geben Sie die Prioritdt an. Diese bestimmt die Position des Reports in Listen (z.B.
Kontextments). Ein sinnvoller Wert hangt von anderen Reports fiir denselben BO-Typ ab
(Vorschlag: 100).

Auch fir Unterklassen des BO-Typs nutzbar: Ermoglicht die Verwendung des Reports auch fir
Objekte von Unterklassen des angegebenen BO-Typs.
Beispiel: Ein Report flir Vertrag ist mit dieser Option auch fiir Mietvertrag verfiighar.

Ist eine Liste: Gibt an, ob der Report mehrere Objekte auflistet (z.B. Ubersicht aller Vertrige)
oder nur ein einzelnes Objekt darstellt (z.B. ein Vertragsdokument).

Ist eigenstandig: Ermoglicht dem Report, die Datengrundlage selbststdndig anhand einer
definierten Abfrage zu ermitteln. Andernfalls kann der Report nur auf eine Objektauswahl (z.B.
in einem Lesezeichen) angewendet werden.

Weisen Sie den Report bestimmten Gruppen zu. Nur Mitglieder dieser Gruppen koénnen den
Report verwenden (Vorschlag: Admins und Benutzer).

Wahlen Sie mogliche (Druck-)Ziele und das voreingestellte Standard-Druckziel. Dies legt das
Ausgabeformat des Reports fest (Vorschlag fiir Standard-Ziel: Vorschau).

Sprachen: Bestimmt, in welchen Sprachen der Report gerendert werden kann. Im Druckdialog
wird die Auswahl auf diese Sprachen beschrankt. Ohne Auswahl wird die Standardsprache des
Reports verwendet.

Speichern und schliefSen Sie das Report-Objekt.
Verschieben Sie den Report im Navigationsbaum in den Zielordner.
Offnen Sie den Report erneut zur Bearbeitung.

Verwenden Sie den Knopf Dateiname vorschlagen, um einen Dateinamen zu generieren.

@ [11530310] Mein erster Report :-) (Dies ist ein Beispiel-Report fir

Rennort-Nefinitinn Anker-Definition Bilder Sub-Reports ReportAorschau Aliase alle Aliase Historie
| Report Parameter CookedParameter
Identifikation (Benutzer) Ziele
Name |Mein erster Report :-) Standard-Ziel | Vorschau]

L10n-Name |Mein erster Report :-)

P:HEIHOOWwS A

Beschreibung |Dies ist ein Beispiel-Report fur die MyTISM-Dokumentation

L10n-Beschreibung Dies ist ein Beispiel-Report fir die MyTISM-Dokumentation K| Name & Beschreibung
. . « Drucker $R{DruckzielDruckerDesc} ($R{Autam:
Identifikat Syst
RSO (Sy=iend DruckerOhneDialog $R{DruckzielDruckerOhneDialogDesc}
externer Schliissel |MCS_MEIN_ERSTER_REPORT €3 Tid vorschlagen HTML-Datei $R{DruckzielHTMLDateiDesc} ($R{Auto
v PDF-Datei $R{DruckzielPDFDateiDesc} ($R{Auton
Dateinama {‘5} Dateiname vorschlagen Vorschau) \ $R{DmuckzielNorschauDesc} ($R{Auton
XLS-Datei (MS Excel) $R{DruckzielxLSDateiDesc} (§R{AUtoM
Sonstiges XML-Datei $R{Druckziel¥MLDateiDesc} ($R{Auton
BO-Typ |Vertrag]
Prioritat 100
ist Automatisch erstellt Ei polymorph | ist eine Liste i ist eigenstandig &
Elter-Pfad |/ Sprachen
Gruppen StandardSprache de: Deutsch (Deutsch) L]
: _Heschreibung |
MName & Beschreibung Beschceig
Admins Die Meister
Benutzer Hier sind alle Benutzer drin

16. Wechseln Sie zum Reiter Anker-Definition.

17. Beispiel fiir die einfachste Version: <set entity="Vertrag"/> (ersetzen Sie "Vertrag" durch den
gewunschten internen Namen des BO-Typs). Genauere Informationen finden Sie im Abschnitt

zur Anker-Definition.
@ [11520310] Mein erster Report :-) (Dies ist ein Beispiel-Report fiir
Report Parameter CookedParameter
Anker-Definition Bilder Sub-Reports Report-\orschau Aliase alle Aliase Histarie

Report-Definition
ent r B

18. Speichern und schliefSen Sie den Report.
19. Exportieren Sie den Report mittels Struktursynchronisation in ein Verzeichnis.

20. Erstellen Sie die eigentliche Report-Layoutvorlage. Nutzen Sie daflir das externe Programm

55

21.

22.

23.
24.

36

iReport. Falls noch nicht vorhanden, laden Sie es herunter und installieren Sie es.

Verwenden Sie zum Bearbeiten der Reports ausschliefSlich iReport 2.0.5 (die
letzte Version, die eine Anderung der Kompatibilititseinstellung erlaubt) und

o wéhlen Sie unter Options Compatibility "JasperReports 2.0.0 - 2.0.1".
MyTISM nutzt eine angepasste Version der JasperReports-Bibliotheken, die
neuere Report-Formate noch nicht unterstutzt.

Starten Sie iReport und offnen Sie die durch die Struktursynchronisation erstellte Vorlage
(REPORTNAME . xm1).

Die Struktursynchronisation erzeugt zwei Dateien: REPORTNAME.rpt.xml und
o REPORTNAME.xml. Die zweite Datei ist die in iReport ladbare Report-Layout-
Definition.

Erstellen/bearbeiten Sie das Vorlage-Layout wie gewiinscht.
Ein Report hat sinnvolle Voreinstellungen, die angepasst werden konnen:

o Seitenformat (vordefiniert oder benutzerdefiniert)
o Seitenausrichtung (Hoch- oder Querformat)
o Seitenrander

Speichern Sie die Report-Definition in iReport.

Importieren Sie den Report zurtick in MyTISM mittels Struktursynchronisation und testen Sie
ihn.

Beispiel: Wahlen Sie ein passendes Objekt (z.B. einen Vertrag) aus einem Lesezeichen und
wihlen Sie im Kontextment drucken mit "Mein erster Report :-)". Lassen Sie das Fenster flr
die Struktursynchronisation geéffnet, um bei Anderungen der Layout-Vorlage den Import
einfach erneut durchfihren Zu konnen.

https://drive.google.com/file/d/16sOZwVrY1FKQT6l5ul-E-byMPbGz1KvH/view?usp=sharing

@ [11530310] Mein erster Report :-) (Dies ist ein Beispiel-Report fur die MyTISM-Dokumentatiol

Renort Parameter CookedParameter
-Definition Anker-Definition Bilder Sub-Reports Report-Varschau Aliase alle Aliase
sion=" " "UTF-8

Historie

Report

rreport. dtd"=

5ize="11" isBold="false" isItalic="false" isUnderline="false ‘ikeThrough=""fa

isSplitAllowed="trus" =

isSplitAllowed="true" =

(Eingabe-)Parameter fir Reports

Parameter erméglichen die Ubergabe benutzerdefinierter, manuell eingegebener Werte an Reports.
Diese miussen in der Reportdefinition definiert und konfiguriert werden. Beim Ausfithren des
Reports im Solstice-Client werden sie dann in einem Dialog abgefragt.

Beispiel:

[...]

<reportFont name="heading" isDefault="false" fontName="Arial" size="10" [...]/>
<parameter name="GruppierenNach" isForPrompting="true" class="java.lang.String">
<property name="choiceScript"
value="model.addEntry('$R{Produkt}"');
model.addEntry('$R{Saison}', 'Ich will einen anderen Titel in der
Box :-)");
model.addEntry('$R{Kurzbezeichnung}');
model.addEntry('$R{Lieferant}"');"/>
<property name="chooseOnly" value="true"/>
</parameter>
<parameter name="Stichtag" isForPrompting="true" class="java.util.Date">
<property name="format" value="MEDIUM_"/>
</parameter>
<field name="THIS" class="java.lang.Object"/>

[...]
e format: Wird von fast allen Parametern unterstitzt und enthélt ein CBOFormat zur

Verarbeitung der Eingabewerte.

* choiceScript: Bei Angabe dieser Property wird eine Combobox mit den Werten aus dem SKkript

57

#cboformat

angezeigt.
Weitere Konfiguration:

> chooseOnly (true/false): Nutzer kann nur vorgegebene Werte auswdhlen (true) oder eigene
eingeben (false).

o nullable (true/false): Kein Wert muss ausgewahlt werden (true).
o Siehe JavaDoc der Klasse de.ipcon.form.FComboBox fiir weitere Informationen

* rawInputDefinition: Fortgeschrittene Benutzer konnen in Spezialfillen die Definition des
Eingabeelements direkt angeben. Dies erfordert Kenntnisse der MyTISM-Formular-XML-
Sprache und sorgfaltiges Escapen von Sonderzeichen. Der Name der property muss dem Typ der
Report-Parameter-Klasse entsprechen (z.B. VString fir java.lang.String, VBO fir Subtypen von
BO).

Beispiel fiir ein Auswahl-Popup fiir einen Benutzer:

<parameter name="EinBenutzer" isForPrompting="true"

class="de.ipcon.db.core.Benutzer">
<property name="rawInputDefinition" value="&1t;Popup

property="VB0"&qt;< Table>&1t;Query type="Text"
entity="Benutzer"&qgt;&1t; filter>NOT AnmeldungVerweigern OR
AnmeldungVerweigern = null</filter&qt;&1t;/Query><Columns>Name,
ASC|Beschreibung</Columns></Table>&1t;/Popupégt;"/>

</parameter>

Die Anker-Definition oder: Wie komme ich an die
Daten?

MyTISM verwendet einen eigenen Ansatz fiir den Reportgenerator, um unabhdngig von
Datenbankdnderungen zu sein und virtuelle Eigenschaften nutzen zu konnen. Das Kernstiick ist die
Anker-Definition, die festlegt, an welchen Objekttypen ein Report verankert ist:

» Welche Entitdt haben die tibergebenen Objekte? <set entity=" ">

* Welche Relationen werden aufgefaltet (Ahnlich zu Joins in SQL)? <many property=" " alias="
Il>

» Wie wird sortiert? <sort ascending="true|false" byProperty=" ">

Die Anker-Definition ist ein XML-Schnipsel und definiert die Entitdt (z.B. Rechnung) sowie das
Auffalten von Relationen mittels many-Tags:

38

Beispiel (Report fiir ein Objekt vom Typ "Rechnung" bei dem die Eintrdge der Relation "Posten” als Liste
ausgegeben werden sollen, aufsteigend (klein — grofs) sortiert nach dem Attribut Posten.Position)

<set entity="Rechnung">
<many property="Posten" alias="P">
<sort ascending="true" byProperty="Position">
</many>
</set>

FIXME TT 2025-04-28: Es gibt auch die Moglichkeit, die anzuzeigenden Objekte uiber eine separate
Query zu laden; Report muss dann Flag "Eigenstaendig" gesetzt haben; es existiert dann eine
Variable BOS mit den Query-Ergebnissen zur Verwendung im Report.

Dadurch werden automatisch Gruppen gebildet und die Daten sortiert. Alle n-1 Relationen und
deren Attribute sind direkt zugreifbar, ohne weitere Definition. Alias-Namen konnen zur
Vereinfachung verwendet werden:

Nummer
Adressat.StandardKontakt.Anschrift.Strasse
P.Artikel.Listenpreis

P.Einzelpreis

P.Gesamtpreis

P.Position

Komplexe Szenarien konnen mit eingebetteten OQL-Queries, Script-Schnipseln oder virtuellen
Properties abgebildet werden.
Um Eigenschaften in Ausdriicken innerhalb eines Reports zu verwenden, nutzen Sie Feld-

Klammern $F{}:

$F{P}.Position
$F{Nummer}

Weitere Klammern sind $P{} fir Parameter und $V{} fir Variablen. Ausdriicke konnen kombiniert
werden, z.B.:

"RG-Nr ${$F{Nummer}}"

"Seite ${$V{PAGE_NUMBER}}"
"${$F{Familienname}}, ${$F{Rufname}}"
L10n.formatDate(new Date(), "yyyy-MM-dd")

Fir komplexe Formatierungen bietet sich das CBOFormat an.

virtualProperties in Reports

Definieren Sie virtuelle Eigenschaften wie folgt:

39

<set entity="StueckListe">
<virtualProperty name="VorhandeneZusatzstoffeAlsString" entity="StueckListe">
<get>de.ipcon.tools.TextTools.join(getVorhandeneZusatzstoffe().values())</get>
</virtualProperty>
</set>

Folgende Variablen stehen zur Verfigung:

bo

Das Objekt, das im Report als "Basis" dient (im obigen Beispiel die "StueckListe", fiir die der
Report aufgerufen wurde).

FIXME TT 2025-04-28: Noch weitere Variablen?
o Achtung: Rufen Sie virtuelle Eigenschaften in textFieldExpressions ohne "get" auf:
Richtig:
<textFieldExpression

class="java.lang.String"><$F{THIS}.qgetVorhandeneZusatzstoffe().isEmpty() ? "-" :
$F{THIS}.VorhandeneZusatzstoffeAlsString</textFieldExpression>

Falsch:
<textFieldExpression

class="java.lang.String"><$F{THIS}.qgetVorhandeneZusatzstoffe().isEmpty() ? "-" :
$F{THIS}.getVorhandeneZusatzstoffeAlsString()</textFieldExpression>

Sonst erhalten Sie eine Fehlermeldung, dass die Methode nicht existiert.

Das CBOFormat und seine Verwendung im Report

Das CBOFormat ermoglicht eine elegante Verwendung von Objekteigenschaften innerhalb eines
Reports. Es muss in Form eines Feldes verpackt werden:

$F{Objektname}.describe("Eigenschaft1")
$F{Objektname}.describe("Eigenschaft1(', 'Eigenschaft2)")
$F{Objektname}.describe("Eigenschaft1' 'Eigenschaft2")

Fiur den Zugriff auf das "Haupt-BO" eines Reports wird automatisch ein Feld namens "THIS"
angelegt. Dariiber konnen Sie per CBO-Format, GStrings oder Groovy-Auswertung auf Inhalte
zugreifen.

60

#cboformat

Beispiel fiir Zugriff iiber CBO-Format

<field name="THIS" class="java.lang.Object"/>
[...]

<textFieldExpression
class="java.lang.String">$F{THIS}.describe("Familienname")</textFieldExpression>

[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.describe("Rufname")</textFieldExpression>

[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.describe("Titel")</textFieldExpression>

[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.describe("Geburtstag")</textFieldExpression>

[...]

Der Zugriff via Groovy-Notation ermdéglicht den Aufruf von Gettern oder anderen Methoden, die
auch andere Werte als Strings zuriickgeben konnen.

Beispiel fiir Zugriff via Groovy-Notation

<field name="THIS" class="java.lang.Object"/>
[...]

<textFieldExpression
class="java.lang.String">$F{THIS}.familienname</textFieldExpression>

[...]

<textFieldExpression class="java.lang.String">$F{THIS}.rufname</textFieldExpression>

[...]
<textFieldExpression
class="java.lang.String">$F{THIS}.titel?.name</textFieldExpression>

[...]
<textFieldExpression class="java.lang.String">$F{THIS}.getAlter (new

Date())</textFieldExpression>
[...]

Troubleshooting

Seitenwechsel / Uberlappende Felder / "wachsende" Felder bei
dynamischem Text

o isStretchWithOverflow="true": Passt die Grofse von Textfeldern an den Inhalt an.

* positionType="float": Verschiebt nachfolgende Felder automatisch nach unten.

* isSplitAllowed="true": Ermdglicht den Umbruch von Bidndern bei wachsendem Inhalt.

* minHeightToStartNewPage: Beeinflusst den Band-Umbruch.

61

Codebausteine

Codebausteine dienen dazu, Teile des XML-Quelltextes zu verwalten, die von verschiedenen
Strukturelementen gemeinsam verwendet werden. Diese Codeteile konnen dann auf einfache
Weise in den Quelltext von Strukturelementen eingebunden werden, ohne dass der Code immer
wieder kopiert werden muss.

Einbinden von Codebausteinen

- * (Neuwp Codebaustein A x|

Parameter | Codebaustein | Argumente | Aliase |

|dentifilkation (Benutzer)

Marme |cndebau5tein

L10n Mame |cndebau5tein

Beschreibung |EEi5piEI—CudEbaustEin ohne weiteren Sinn ;-3

L1dn Eeschreibung|EEi5piEI—CudEbaustEin ohne weiteren Sinn ;-3

Identifikation (&ywsterm)

Externer Schlissel |MPS_CB_BEISPIEL |‘ €53 TID vorschiagen
Dateiname |/codebaustein |H {3 Dateinarne varschlagen
Sanstiges

[st automatike E
Pfad |/

Codebausteine konnen einfach durch Einfligen eines Elementes
<Includename="codebausteinName/pfad"/> im Quelltext (Attribut "Parameter" bzw. zusitzlich
Attribute "AnkerDefinition" und "ReportDefinition” bei Reports) eines Strukturelementes
eingebunden werden. Dabei gibt das Attribut name den Namen (ggf. mit Pfad) an, unter dem der
Codebaustein im Navigationsbaum abgelegt ist.

Bitte beachten: Damit der Codebaustein richtig gefunden wird, mussen Sie sowohl
fir den Codebaustein als auch fiir die Ordner im ggf. angegebenen Pfad den Wert
aus dem "Name"-Attribut des Codebausteins bzw. Ordners verwenden! Der im

é Baum angezeigte Name ist der sog. "L10nName", der automatisch (soweit
verfugbar) in der fir den Client angezeigten Sprache gehalten ist. Dieser
"L10nName" wird sich in vielen Féllen vom eigentlichen Namen des Elements in
"Name" unterscheiden!

Beispiel eines Codebausteins und seiner Einbindung in Formularen.

62

Codebaustein "Allgemein.elem”, abgelegt im Ordner "/Admins/$R{MyTISM}/$R{Alarme}/$R{X}":

<Element>
<Border etched="true" title="Allgemein">
<View>
<Element label="$R{Name}">
<Text displayProperty="Name" columns="25"/>

</Element>
<I-- ...noch mehr Quelltext... -->
</View>
</Border>
</Element>

Formular "$R{_BOBasierterTermin} (Vorgebaut)":

<Tab title="Allgemein" scrollable="true">
<View>
<!-- Einbindung von Codebausteinen: -->
<Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Allgemein.elem"/>
<Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Maske.elem"
parentClass="de.ipcon.db.core.BOBasierterTermin"/>
<Element>
<Border etched="true" title="Ausldsung">
<View>
<Element label="$R{Attribut}">
<Text displayProperty="Attribut" columns="25"/>
</Element>

Formular "$R{_Hinweis} (Vorgebaut)":

</View>
</Tab>
<Tab title="Allgemein" scrollable="true">
<View>
<!-- Einbindung von Codebausteinen: -->
<Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Allgemein.elem"/>
<Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Maske.elem"
parentClass="de.ipcon.db.core.Hinweis"/>
<Include name="/Admins/$R{MyTISM}/$R{Alarme}/$R{X}/Sonstiges.elem"/>
</View>
</Tab>
<Tab title="Ausldsekriterien" scrollable="true">
<View>
<Element>

63

Reiter "CookedParameter", "CookedReportDefinition" sowie
"CookedAnkerDefinition" und "Codebausteine"

Die vorgebauten Formulare fir Lesezeichen, Formulare, Schablonen und Reports beinhalten zwei
Reiter namens "CookedParameter" und "Codebausteine". Unter "CookedParameter" kann man sich
ansehen, wie der Quellcode des Strukturelements (aus dem Attribut "Parameter") letztendlich
aussieht, nachdem der Inhalt aller Codebausteine eingefiigt und alle L10n-Eintrdgen durch den
entsprechenden sprachspezifischen Text ersetzt wurden. Bei Reports existieren aufserdem noch die
"CookedReportDefinition" und die "CookedAnkerDefinition", die dasselbe fiir den Inhalt des
Attributs "ReportDefinition" bzw. "AnkerDefinition" anzeigen.

Unter "Codebausteine" kann man sehen, welche Codebausteine vom aktuellen Strukturelement
verwendet werden und diese direkt 6ffnen.

Pfadangaben fiir Codebausteine

Absolute Pfade mit "/" am Anfang (wie in obigen Beispielen) werden immer von der Wurzel des
Navigationsbaumes (genauer eigentlich: Der Struktur-Hierarchie) aus aufgelost.

nn non

Relative Pfade mit ".", "." oder direkt einem Namen am Anfang werden vom "Standort" des
aufrufenden Strukturelements aus aufgeldst. Dabei bezeichnet "." den aktuellen Standort (wird
wohl eher selten bendtigt), "." den Elter des aktuellen bzw. des vorher im Pfad genannten
Strukturelements. Normalerweise greift bei relativen Pfaden automatisch ein Fallback-
Mechanismus; dieser funktioniert indem der Codebaustein (mit dem gegebenen relativen Pfad)erst
vom Standort des aufrufenden Strukturelements, wenn er dort nicht gefundenwird von dessen
Elter aus, dann ggf. von dessen Elter, etc. gesucht wird. Durch Angabe von useFallback="false"
beim Include-Aufruf wird der Fallback-Mechanismus deaktiviert; in diesem Fall wird nur einmal,

ausgehend vom aufrufenden Strukturelement aus, gesucht.

Benamsung von Codebausteinen

Der Name des Codebausteins sollte einen Hinweis darauf geben, um was es sich bei dem Inhalt
handelt. Hierzu wird er mit einer Endung versehen. Oft verwendete Endungen sind: "button":
Inhalt besteht aus einem "button"-Element, ggf. mit zugehoriger Action. "elements":: Inhalt besteht
aus mehreren, beliebigen XML-Elementen. "filter":: Inhalt definiert einen Filter fir ein Lesezeichen.
"script":: Inhalt ist ein Skript. "tab™:: Inhalt ist ein ganzer Reiter ("Tab") eines Formulars. "table":
Inhalt ist eine Tabellendefinition. "view":: Inhalt ist ein "view"-Element fiir ein Formular.

Die Verwendung dieser (und ggf. weiterer Endungen) ist allerdings nur eine Konvention und zur
Nutzung von Codebausteinen nicht unbedingt notwendig.

Example 1. Namensbeispiele:

EinstellungenNavigationsbhaum.tab
Benutzer.table

64

Inhalt von Codebausteinen

Codebausteine konnen einen beliebigen Inhalt haben, angefangen von einem kurzen oder langeren
normalem Text bis hin zu grofsen XML-Stiicken.

Beispiele fir mogliche Codebausteine:

text

text text text viel text
und noch mehr text
und noch weiterer text

dann ausserdem noch text

<element>text</element>

<element>
<kindelement>text</kindelement>
</element>

<element attribut1="wert">
<kindelement>textl1</kindelement>
<kindelement attribut="wert">text2</kindelement>
</element>

Zu beachten ist allerdings, dass es sich - aus technischen Grinden - bei dem Inhalt eines
Codebausteins (mehr oder weniger) um ein wohlgeformtes XML-Dokument handeln muss. Dies
bedeutet insh. dass es genau ein "Root"- bzw. "Wurzel"-Element geben muss; will man mehrere, in
der gleichen "Hierarchie-Stufe" befindliche (XML-)Elemente in einem Codebaustein abspeichern,
muss man in diesem Fall ein "kunstliches"Wurzel-Element einfiigen. Dieses trdgt den Namen
Include und wird beim Einfiigenin den Quellcode anderer Struktruelemente einfach entfernt (d.h.
es wird nur der Inhalt dieses Elements eingefiigt.

Beispiel:
<element attributl="wert"/>

<element>text</element>
<andereselement/>

65

muss geschrieben werden als:

<Include>
<element attribut1="wert"/>
<element>text</element>
<andereselement/>
</Include>

Dieses kiinstliche "Include"-Element kann immer - also auch wenn sowieso eigentlich schon nur ein
Wurzel-Element existiert - angegeben werden.

Beispiel:

<element attributl="wert">text</element>

kann auch geschrieben werden als:

<Include>
<element attributl="wert">text</element>
</Include>

hideComment beim Einbinden eines Codebausteines

Beim Einbinden von Codebausteinen werden vor dem Code des eigentlichen Codebausteines
standardmadssig Kommentare eingesetzt, die Anfang und Ende des Codebausteines im Quelltext
kennzeichnen. Der Mechanismus, der diese Kommentare erzeugt, figt zwischen den
Kommentartags und dem eigentlichen Inhalt des Codebausteines eine Anzahl von Leerzeichen ein.
Dieses Verhalten ist offensichtlich eine Eigenart der genutzten XML-Bibliothek. Fir
Programmquelltext ist dieses Verhalten nicht weiter storend.

Wenn der Codebaustein jedoch z.B. fiir eine mehrzeilige Kundenadresse verwendet wird, so kann
es passieren, dafd die Leerzeichen, die hinter dem Ende des Kommentares automatisch eingefuigt
wurden, eine Verschiebung in der ersten Zeile der Adresse verursachen. Die erste Zeile, die in dem
Fall einen Namen enthielt und in einem Report verwendet wurde, war im generierten Report nach
rechts verschoben. Um diesen Effekt zu vermeiden laf3t sich das Einfligen von Kommentaren beim
Einbinden des Codebausteines pro Verwendung individuell deaktivieren. Dafiir existiert das
vordefinierte Argument hideComment. Es wird, analog zu den bereits beschriebenen Argumenten, als
Attribut im Include-Statement wie im folgenden Beispiel eingegeben.

<Include name="codebaustein" hideComment="true"/>

Einziger - bekannter - Nachteil dieses Argumentes: Die Referenzpunkte, die man in den Cooked-
Parameters etc. hat, um diesen Codebaustein zu finden - die XML-Kommentarzeilen - existieren
nicht mehr.

66

Argumente fiir Codebausteine

. * (Mew) Codebaustein ||
Parameter] Codebaustein | Argumente Aliase |
Marme | standarchwert B
HH fweeiteresArgurnent |Dies ist auch ein Standardwert -
attribiert gins
4
[+]
Details
Name|weiteres,ﬁrgument |
Standardwen|Dies ist auch ein Standarchwert |

Teilweise kann es vorkommen, dass ein Stiick Quellcode in verschiedenen Strukturelementen fast
gleich vorkommt, sich aber in einem oder mehreren kleinen Punkten unterscheidet:

Quellcode 1:

<element>
Ein bisschen Text.
<-- Fast gleich: -->
<element attribut="eins"/>
<-- Ende -->
<weiteresElement/>
</element>

Quellcode 2:

<element>
<einElement>inhalt</einElement>
<nochEinElement/>
<-- Fast gleich: -->
<element attribut="zwei"/>
<-- Ende -->
<wiederumEinElement attr="wert"/>
</element>

Fir diese Argumente kann man auch Standardwerte definieren (siehe u.a. obiger Screenshot), die
automatisch genommen werden, wenn beim "Aufruf" desCodebausteins kein Wert fir das
Argument mit ibergeben wurde. Dies ist insb. dann sinnvoll, wenn der Codebaustein oft verwendet
wird, der Wert aber in den meisten Fallen gleich ist und nur ein- oder wenige Male ein anderer
Wertbenotigt wird:

67

Quelltext eines Codebausteins der aufserdem (iiber das Codebaustein-Formular) noch ein
CodebausteinArgument "attrWert" mit Standardwert "eins" definiert hat:

<element attribut="$IP{attrWert}"/>

Quellcode 1:

<element>

Ein bisschen Text.

<!-- War: <element attribut="eins"/> -->

<Include name="codebaustein"/> <!-- attrWert="eins" braucht nicht angegeben zu
werden. -->

<weiteresElement/>
</element>

Quellcode 2:

<element>
<einElement>inhalt</einElement>
<nochEinElement/>
<!-- War: <element attribut="zwei"/> -->
<Include name="codebaustein" attrWert="zwei"/>
<wiederumEinElement attr="wert"/>

</element>

Core-Codebausteine

jahrMonatTag.filter

Dieser Codebausten gibt die Moglichkeit, Eintrage bestimmter Tabellen nach einem bestimmten
Datumsattribut zu filtern.
Er erzeugt drei Drop-Downs: Eins fiir jeweils Jahr, Monat und Tag.

Jahr 2019 Monat 9 « Tag |13

Der Filter richtet sich zunéchst einmal nach den verfiigharen Einstellungen-Variablen, die gesetzt
sind (entweder global, speziell fir eine Gruppe, oder den Benutzer selbst), um die drei Filter mit
Werten vorzubelegen.
Die Einstellungen-Variablen sind die folgenden:

* jahrMonatTagFilter.Jahr

» jahrMonatTagFilter.Monat

* jahrMonatTagFilter.Tag

Ist fiir ein Feld keine Einstellungen-Variable gesetzt, wird das Feld mit keinem konkreten Wert
vorbelegt, steht also auf "alle".

68

Um das Jahr via einer Einstellungen-Variable zu besetzen(also Systemweit, gruppen- oder
benutzerspezifisch), die aber nur fur eine spezifische Tabelle gelten soll, kann man dem
Codebaustein den Parameter "parmPostfix" mitgeben.

Ist dann eine Einstellungen-Variable jahrMonatTagFilter.Jahr.<parmPostfix> gesetzt, hat diese nur
fir Tabellen aus Strukturelementen, die dem Codebaustein den selben Postfix mitgeben,
auswirkungen.

Weitere optionale Parameter des Codebaustens:

e attrDatum 1.)

* parmJahrVon 2.)

* parmJahrBis 3.)

* JahrDefaultIsAll 4.)

1.) Der Name des Attributes, nach dessen Datum gefiltert werden soll. Default ist "Crea".
2.) + 3.) Das Start- und Endjahr, von denen ausgewahlt werden darf.
Beispiele:

* ParmJahrVon="2000", ParmJahrBis="2019" - logischerweise alle Jahre von 2000 bis 2019

* ParmJahrVon="-10", ParmJahrBis="+10" - die letzten und n&chsten 10 Jahre (im Jahr 2019:
2009-2029)

Die Default-Werte liegen hier bei: ParmJahrVon="2000" und ParmJahrBis="+0", also von 2000 bis zu
dem aktuellen Jahr.

4.) JahrDefaultIsAll: Ein Parameter, mit dem, unabhdngig von Einstellungen-Variablen,
Strukturelemente dem Codebaustein vorgeben konnen, dass der "Jahr"-Filter mit "alle” vorbelegt
werden soll. Default ist "false".

Problembehebung

IllegalArgumentException: Invalid parameter "xyz" given...

Diese Fehlermeldung bedeutet, dass beim "Aufruf” eines Codebausteins ein Argument angegeben
wurde, das fiir diesen Codebaustein nicht definiert wurde. Wenn nicht wirklich einfach vergessen
wurde, das Codebaustein-Argument am Codebaustein zu definieren (s.0.) kann das auch passieren,
falls der Benutzer keine ausreichenden Rechte hat, Codebaustein-Argumente zu lesen. In diesem Fall
wird dann zwar der Codebaustein (fiir den Leserechte gesetzt sind) geladen, aber die eigentlich
dafir definierten Codebaustein-Argumente konnen nicht geladen werden (was aufgrund des
Designs des Rechtesystems aber nicht zu einer Fehlermeldung fiihren kann und soll) und deswegen
sieht es so aus, als waren fiir den Codebaustein keine Argumente vorhanden, was wiederum diesen
Fehler zur Folge hat.

69

Benachrichtigungen

Dokumentation zum Benachrichtigungssystem befindet sich im Admin-Handbuch.

70

Alarme

71

Grundlagen

Es ist moglich, in MyTISM sog. Alarme zu definieren, bei deren Auslosung die fiir den jeweiligen
Alarm eingetragenen Empfanger benachrichtigt oder andere Aktionen ausgefiihrt werden. Es gibt
vier Varianten von Alarmen, die fir jeweils unterschiedliche Zwecke gedacht sind.

Einfacher Termin
Dies ist die einfachste Alarm-Variante; der Alarm wird einfach zu einem vorher eingetragenen,

festen Zeitpunkt ausgelost.
Alternativ gibt es auch die Moglichkeit, den Alarm mit einer konfigurierbaren Frequenz

wiederholt auslosen zu lassen.

Beispiel: Am 22. Juli 2011 um 14:00 Uhr ist eine Projektbesprechung angesetzt. Alle
Projektteilnehmer sollen eine Viertelstunde vorher eine Benachrichtigung erhalten.

BO-basierter Termin
Diese Alarm-Variante dhnelt der Variante "Einfacher Termin" insofern, als dass die Alarme
ebenfalls zu einem festgelegten Zeitpunkt ausgelost werden. Allerdings "uberwacht" ein BO-
basierter Termin eine Menge von Objekten ("BOs") und legt fiir jedes dieser Objekte einen
eigenen Ausldsezeitpunkt fest.

Beispiel: Fur alle Mitarbeiter ist der jeweilige Geburtstag eingetragen. Die Mitarbeiter sollen
jedes Jahr eine automatische Gratulation erhalten (ob das wirklich so eine tolle Idee ist, sei
mal dahingestellt ...).

Hinweise
Diese Alarm-Variante dient dazu, Alarme auszuldsen, wenn bestimmte Ereignisse in der
MyTISM-Anwendung auftreten bzw. bestimmte Anderungen an Objekten erfolgen.

Beispiel: Der Chef der Buchhaltung méchte benachrichtigt werden, sobald der Bestand eines
Kontos unter 100,- EUR sinkt.

Wiedervorlagen
Diese Alarm-Variante dient dazu, Alarme auszultsen, wenn bestimmte Ereignisse in der
MyTISM-Anwendung nicht innerhalb einer festgelegten Zeit aufgetreten sind bzw. bestimmte
Anderungen an Objekten innerhalb einer festgelegten Zeit nicht erfolgt sind.

Beispiel: Der Projektleiter mochte benachrichtigt werden, wenn sich der Status eines
Projekts zwei Tage lang nicht gedndert hat.

Gegenbenenfalls kann es in Threr MyTISM-Anwendung auch noch eigene Untervarianten dieser
Alarm-Typen geben, die fiir spezielle Zwecke gedacht sind. Diese besitzen ggf. zusatzlich zu den

72

normalen Eigenschaften der Alarme noch zuséatzliche Eigenschaften und Funktionen. Ob solche
Untervarianten existieren, woflir sie benutzt werden und weitere Informationen hierzu kann
Ihnen Ihr MyTISM-Administrator geben.

73

#alarme_eigenschaften

Vorbereitung und Konfiguration

Alarmsystem-Lizenz einspielen

Das Alarmsystem ist eine optionale Erweiterung des Standard-MyTISM-Systems. Um es aktivieren
und nutzen zu konnen, miussen Sie zuerst eine giltige Alarmsystem-Lizenz erworben und auf dem
Server eingespielt haben.

Alarmsystem aktivieren

Das Alarmsystem ist normalerweise deaktiviert, d.h. Sie konnen zwar beliebige Alarme anlegen,
diese werden aber von MyTISM erst einmal in keiner Weise behandelt.

Um das Alarmsystem zu aktivieren mussen Sie in der Datei mytism.ini im Abschnitt [Alarme] die
Einstellung activateAlarme auf if_possible oder mandatory setzen. Sowohl if_possible als auch
mandatory starten das Alarmsystem; sie unterscheiden sich lediglich darin, dass bei mandatory eine
auffalligere Fehlermeldung ausgegeben wird (ursprunglich sollte der Serverstart abgebrochen
werden, was nach Diskussion dann aber deaktiviert wurde).

Sollte der entsprechende Abschnitt noch nicht existieren, fligen Sie ihn einfach ein.

[Alarme]
activateAlarme=if_possible

Wenn Thre MyTISM-Installation mehrere synchronisierende Server umfasst, missen - und durfen -
Sie das Alarmsystem aus technischen Grinden nur auf dem autoritativen Server aktivieren. Wenn
Sie obigen Eintrag in der Datei mytism.ini eines nicht-autoritativen Servers eintragen, wird nur
eine Warnmeldung im Log ausgegeben und das Alarmsystem dort nicht aktiviert.

Sync-Events behandeln

Sollten Sie in der Datei mytism.ini im Abschnitt [Alarme] noch einen Eintrag handleSyncEvents=1
oder handleSyncEvents=0 aufgefiihrt haben, kénnen Sie diese Zeile loschen, da sie zu einer
mittlerweile nicht mehr bendtigten und nicht mehr unterstiitzten Konfigurationsmaoglichkeit
gehort. Falls die Zeile vorhanden ist wird sie ignoriert.

Benachrichtigungssystem aktivieren

Sollen Empfinger Dbeim Auslosen eines Alarms benachrichtigt werden muss das
Benachrichtigungssystem ebenfalls aktiviert und entsprechend konfiguriert sein. Wenn dies nicht
der Fall ist, konnen keine Benachrichtigungen (per e-Mail 0.A) versandt werden und die
ausgelosten Alarme sind nur tber das AlarmAusloesungen-Lesezeichen bzw. den entsprechenden
Reiter z.B. im Benutzerformular ersichtlich.

74

#benachrichtigungen

Anlegen und Verwalten von Alarmen

Alarme sind ganz normale Objekte und kénnen mit den entsprechenden Schablonen, Lesezeichen
und Formularen angelegt und verwaltet werden. Die automatisch generierten Schablonen,
Lesezeichen und Formulare befinden sich im Ordner Admins MyTISM Alarme. Diese
Strukturelemente sind normalerweise nur fiir MyTISM-Administratoren verfligbar.

Evtl. existieren auf Ihrer speziellen MyTISM-Installation auch noch weitere, angepasste Formulare
und Lesezeichen oder Formulare und Lesezeichen fiir eigene Alarm-Untervarianten. Diese
befinden sich dann maoglicherweise in anderen Ordnern; weitere Informationen hierzu kann Ihnen
Thr MyTISM-Administrator geben.

Gruppe "Admins Alarmsystem"

Es gibt in MyTISM-Applikationen eine automatisch angelegte Gruppe "Admins Alarmsystem".
Benutzer, die dieser Gruppe zugewiesen wurden, haben automatisch alle Rechte um Alarme und
damit zusammenhédngende Objekte zu erstellen und zu verwalten.

Auflerdem steht ihnen im Gruppen-Ordner ein Lesezeichen "Alarme" zur Verfiigung, mittels derer
sie die im System vorhandenen Alarme auflisten, 6ffnen, editieren und tiber das Kontext-Menu
neue Alarme anlegen konnen.

Alarme aktivieren und deaktivieren

Alle Alarme besitzen ein "Aktiv'-Flag. Ist dieses gesetzt, so ist der Alarm aktiviert und kann
ausgelost werden. Ist das Flag nicht gesetzt - der Standard bei neuen Alarmen - so ist der Alarm
deaktiviert und l6st nicht aus.

Sie konnen hiermit einen Alarm quasi "vorbereiten”, in dem Sie alle benétigten Daten des Alarms
eintragen, aber das "Aktiv"-Flag noch nicht setzen. Der Alarm ist dann bereits im System bekannt,
wird aber noch nicht behandelt. Sie konnen in diesem Fall das "Aktiv"-Flag zu einem spdteren
Zeitpunkt setzen und den Alarm speichern; der Alarm wird dann ab diesem Zeitpunkt behandelt.

Fir BO-basierte Termine und Wiedervorlagen erfolgt die Initialisierung der

o WiedervorlageStatus bzw. BOBasierterTerminStatus in jedem Fall beim ersten
Speichern des Alarms, da diese Informationen zum Funktionieren dieser Alarme
essentiell sind und immer bendtigt werden.

Die Aktivierung von neu angelegten (und auf "Aktiv" gesetzten) Hinweisen und EinfachenTerminen
geschieht sehr schnell, die Aktivierung von BO-basierten Terminen und Wiedervorlagen kann aus

technischen Grunden, je nach der Anzahl der zu "uberwachenden" Objekte, etwas Zeit in Anspruch
nehmen (siehe Wiedervorlagestatus).

Testmodus fiir Alarme

75

#wiedervorlagestatus
#bobasierterterminstatus
#wiedervorlagestatus

° Der Testmodus fiir Alarme ist noch in Arbeit; ggf. &ndert sich das Verhalten in
diesem Bereich in Zukunft noch.

Alle Alarme konnen in einem Testmodus betrieben werden; hierzu muss das entsprechende
"Testmodus"-Flag gesetzt werden. Ist dieses gesetzt, so 10st der Alarm keine Benachrichtigungen aus
und erzeugt auch keine AlarmAuslosungen-Objekte.

Es werden lediglich entsprechende Info-Meldungen im Log ausgegeben, mittels derer verfolgt
werden kann, was bei der Auslosung passiert wére.

Sonstige bei der Auslosung normalerweise erfolgende Dinge passieren jedoch
weiterhin: So werden z.B. einfache Termine auch geléscht, wenn sie im Testmodus
° "ausgelost” wurden, etc. Fiir BO-basierte Termine und Wiedervorlagen erfolgt die
Aktualisierung der WiedervorlageStatus bzw. BO-basierter TerminStatus (siehe
alarme_alarmAusloesungen) in jedem Fall weiterhin, da diese Informationen zum
Funktionieren dieser Alarme essentiell sind und immer bendtigt werden.

76

#alarme_benachrichtigungen
#alarme_alarmAusloesungen
#alarme_alarmAusloesungen

Gemeinsame Eigenschaften aller Alarme

Alle Alarme haben bestimmte Eigenschaften gemeinsam:

Erster Reiter

Name

Pflichtfeld - Der Name oder Titel eines Alarms sollte den Alarm kurz und pragnant benennen.
Der Name kann frei gewadhlt werden und kann z.B. bei der Anzeige der Alarme im zugehorigen
Lesezeichen oder bei den Benachrichtigungen bei der Alarm-Auslosung benutzt werden. Es ist
sehr sinnvoll, jedoch keineswegs zwingend, dass unterschiedliche Alarme unterschiedliche
Namen haben :-)

Beschreibung

Optional - Die Beschreibung kann einen langeren Kommentar bzw. eine ldngere Beschreibung
des Alarms beinhalten. Dieser Text kann z.B. bei den Benachrichtigungen benutzt werden.

Empfanger "Sende Benachrichtigungen an ... diese(n) Empféanger (CC) ... (und) diese(n)
Empfinger (BCC)"
Mindestens eines von "Empfinger (CC)", "Empfinger (BCC)" oder "Benachrichtigungsskript" muss
gegeben sein - Wie bereits erwahnt konnen Empfanger definiert werden, die bei der Auslosung
eines Alarms benachrichtigt werden sollen.
Alle "Empfanger (CC)" sind bei der Benachrichtigung fir alle anderen Empfénger einsehbar;
Benachrichtigungen fiir "Empfanger (BCC)" werden dagegen einzeln versendet, so dass kein
Empfanger tiber die anderen Bescheid weifs.
Ein Empfanger, z.B. ein Benutzer, erhdlt fir eine Alarm-Auslésung immer nur eine
Benachrichtigung, auch wenn z.B. fir einen Alarm mehrere Gruppen als Empfanger eingetragen
wurden und der Benutzer Mitglied in mehreren dieser Gruppen ist oder der Benutzer selbst
ebenfalls fiir den Alarm eingetragen wurde.

Benachrichtigungsvorlage "Erstelle die Benachrichtigung mit ..."

Pflichtfeld - Die BenachrichtigungsVorlage wird beim Versand von Benachrichtigungen
verwendet und gibt die Texte fur Betreff und Nachrichtentext vor sowie ermdglicht die
Definition von Inline-Bildern, die in HTML-formatierten Email via cid: mit der angegebenen
Content-Id in URLs referenziert werden konnen. Es handelt sich hierbei zwar um ein
eigenstandiges Objekt, dessen Daten konnen jedoch direkt im Alarm-Formular bearbeitet
werden.

"Alte Alarme nur auslosen wenn nicht dlter als", Reiter "Erweitert"

Optional - Es kann passieren, dass Alarme zu einem bestimmten Zeitpunkt hatten ausgelost
werden sollen, dies jedoch nicht passiert ist, z.B. weil zu dieser Zeit das Alarmsystem deaktiviert
war. Die entsprechenden Ausléosungen werden dann normalerweise spdter (also z.B. sobald das
Alarmsystem wieder aktiviert wird) "nachgeholt".

Wenn Sie mochten, dass dabei nur Alarme ausgelost werden, bei denen der eigentliche
Auslosezeitpunkt nicht zu weit in der Vergangenheit liegt, konnen Sie hier angeben, wie weit die
eigentliche Auslosung maximal zurtick liegen darf.

77

#benachrichtigungen_empfaenger

Benachrichtigungsskript "Sende Benachrichtigungen mittels dieses Skripts", Reiter
"Erweitert"

Mindestens eines von Benutzer, Gruppe oder Benachrichtigungsskript muss gegeben sein - Diese
Eigenschaft dient dazu, bei der Auslosung von Alarmen eigene Aktionen ausfithren zu kénnen
und wird nur bendétigt, wenn die Standardmoglichkeiten zur Benachrichtigung von Benutzern
bzw. Gruppen einmal nicht ausreichen. Ausfiihrlichere Informationen hierzu finden Sie im
Abschnitt Benachrichtigungsskript.

Reiter "Erweitert"

"Verantwortlicher"

Optional - Hier kann ein Benutzer angegeben werden, der in irgendeiner Weise "verantwortlich"
fir diesen Alarm ist. Wird der Alarm aufgrund von zu vielen Fehlern deaktiviert, wird diesem
Benutzer eine Benachrichtigung als Information geschickt; ebenso wird z.B. bei Fehlern im
Ausloseskript eine Benachrichtigung an den Verantwortlichen geschickt. AufSerdem wird der
Wert dazu verwendet bei Benachrichtigungen bei Alarmauslosung den "Absender" dieser
Benachrichtigung zu setzen, falls nicht explizit ein abweichender Absender am Alarm gesetzt
wurde.

Wenn hier nichts angegeben ist und auch kein Absender gesetzt ist, wird als Absender der
interne Benutzer des Alarmsystems benutzt. Bei Benachrichtigungen, die per e-Mail verschickt
werden, wird die erste e-Mail-Adresse dieses Benutzers als Absender der Mails gesetzt (wenn
mehrere Adressen fur den Benutzer verfiighar sind, ist nicht definiert, welche davon "die erste"
ist).

"Bei Ausfall benachrichtigen"

Optional - Hier kann eine Gruppe angegeben werden, die bei Fehlern am Alarm, zusatzlich zum
Verantwortlichen, benachrichtigt wird.

"Uberwachung starten ab"

Optional - Normalerweise werden Alarme sofort aktiv, sobald sie erstellt und als "Alarm ist
aktiv" definiert wurden. Falls Sie hier ein Datum und ggf. eine Zeit eintragen wird der Alarm erst
zu diesem Zeitpunkt aktiv und wird nicht vor diesem Zeitpunkt ausgelost.

"Will verschliisselte Benachrichtigungen" und "Will signierte Benachrichtigungen"

Optional - Alarme konnen die Standardeinstellungen des Systems fir verschlusselte und/oder
signierte Benachrichtigungen gezielt tiberschreiben. Eingestellte Werte hier uUbersteuern die
Standardeinstellungen aber werden wiederum selbst von ggf. vorhandenen Einstellungen der
Benutzer ubersteuert.

"Héange statt dem auslosenden Objekt an die Benachrichtigungen an ..."

78

Wird unter Anhangen von (weiteren) Objekten genauer erklart.

#alarme_benachrichtigungsscript
#benachrichtigungen_vorbereitung_openpgp
#benachrichtigungen_vorbereitung_openpgp
#benutzer_vorbereitung_openpgp
#benutzer_vorbereitung_openpgp
#alarme_objekte_anhaengen

Einfacher Termin

Wie oben bereits erwidhnt, handelt es sich bei einfachen Terminen um Alarme, die, ohne dass
weitere Bedingungen erfullt sein missen, einfach zu einem festgelegten Zeitpunkt ausgelost

werden.

Beispiel: Am 22. Juli 2011 um 14:00 Uhr ist eine Projektbesprechung angesetzt. Alle
Projektteilnehmer sollen eine Viertelstunde vorher eine Benachrichtigung erhalten.

@ einfacher, Termin|[19914876] Projektbesprechung

| Allgemein | Erweitert | Alarmausldsungen

Allgemeine Infos

MName |Projektbesprechung

Beschreibung
Alarm auslédsen ...
o @mfum | 22,.07.2011 14:00:00
... aber sende Benachrichtigungen |15m
Sende Benachrichtigungen an ...

... diese(n) Benutzer Alice,Bob,Claire
... (und) diese Gruppe(n)
Erstelle die Benachrichtigungen mit ...
Projektbesprechung (Benvaorlage)

... diesem Betreff Erinnerung Projektbesprechung
Hallo ${benutzer.getMName()}!

Bitte denke an die Projektbesprechung
um ${api.formatDate(alarm.getDatumStart(), "HH:mm:ss

... diesem Text
Mit freundlichen Grifen
Alice, Projektleiterin

Allgemeine Eigenschaften festlegen

friher (Worwarnzeit).

1} Uhr.

Geben Sie dem einfachen Termin einen kurzen aber aussagekraftigen Namen, und ggf. wenn

sinnvoll eine ldngere Beschreibung.

"Alte Alarme nur auslosen wenn nicht dlter als" und "Verantwortlicher" konnen Sie, bei Bedarf, auf

dem Reiter "Erweitert" angeben.

Wann soll der einfache Termin stattfinden?

Einfache Termine konnen entweder einmalig, zu einem fest eingetragenen Zeitpunkt, oder

wiederholt, mit einer konfigurierbaren Frequenz, ausgelost weden.

79

An einem festen Zeitpunkt

Geben Sie bei "Alarm auslésen” - "... am/um" das Datum und die Zeit an, wann der einfache
Termin stattfindet bzw. beginnt.
Der Alarm 16st zu diesem Zeitpunkt einmal aus und wird danach automatisch geléscht.

Wiederholt

Geben Sie bei "Alarm auslésen” — "... (oder stattdessen) wiederholen nach Muster" die Definition
an, die festlegt, mit welcher Frequenz der Termin auslosen soll.

Der Alarm lost immer wieder aus, zu Zeitpunkten die anhand der angegebenen Definition
bestimmt werden. Hilfe zur Definition (im sog. "Cron-Format") finden Sie z.B. unter
http://www.nncron.ru/help/EN/working/cron-format.htm

Vorwarnzeit

Normalerweise wird der einfache Termin erst zum angegebenen bzw. ermittelten Zeitpunkt
ausgelost und eventuelle Benachrichtigungen werden also auch erst dann versendet.

Wenn die Auslosung bereits statt finden soll, bevor der einfache Termin eigentlich "startet", konnen
Sie unter "... aber sende Benachrichtigungen ... friher (Vorwarnzeit)" optional eine Zeitspanne
angeben, um wieviel friher dem angegebenen bzw. ermittelten Zeitpunkt dies erfolgen soll.

Wer soll Benachrichtigungen erhalten und wie sollen
diese aussehen?

Siehe auch Benachrichtigung bei Alarm-Auslésung, Standard-Mechanismus

Geben Sie bei "Sende Benachrichtigungen an ... diese(n) Benutzer ... (und) diese Gruppe(n)" ein
oder mehrere Benutzer und/oder Gruppen an, der oder die bei der Auslosung des einfachen
Termins benachrichtigt werden soll(en).

Ein Benutzer erhalt fir eine Alarm-Auslosung immer nur eine Benachrichtigung, auch wenn z.B.
fir einen Alarm mehrere Gruppen eingetragen wurden und der Benutzer Mitglied in mehreren
dieser Gruppen ist oder der Benutzer selbst ebenfalls fiir den Alarm eingetragen wurde.

Bei "Erstelle die Benachrichtigung mit ..." wahlen Sie eine Textvorlage aus, mittels derer der Betreff
und der Text der zu versendenden Benachrichtigungen festgelegt werden. Alternativ konnen Sie
mittels des Schreibstift-Icons auch eine neue, eigene Vorlage direkt erstellen.

Wenn der Text flir die Benachrichtigung (von Leerzeichen abgesehen) mit <html>

o beginnt, werden die daraus generierten e-Mails als HTML-Mails verschickt. Wenn
der Text nicht auf diese Weise beginnt werden die e-Mails als ganz normale
Textmails verschickt.

80

http://www.nncron.ru/help/EN/working/cron-format.htm
#alarme_standardbenachrichtigungen

Alice, die Projektleiterin, mochte Bob und Claire, die beiden anderen Projektmitarbeiter, am
22. Juli um 14:00 Uhr zu einer Besprechung einladen.

Sie erstellt also einen neuen EinfachenTermin mit Namen "Projektbesprechung". Unter "Alarm
auslosen ... am/um” tragt sie "22.07.2011 14:00" ein.

Damit jeder auch noch Zeit hat, seine Sachen zusammenzusuchen und von seinem Biiro in den
Besprechungsraum am anderen Ende des Gebdudes zu gelangen, setzt sie eine "... aber sende
Benachrichtigungen ... frither (Vorwarnzeit)" von 15 Minuten (d.h. sie tragt "15m" ein), so dass
die Benachrichtigungen um 13:45 Uhr bei den Teilnehmern ankommen.

Zu benachrichtigende Benutzer sind natirlich Bob und Claire und sie tragt sich selbst
ebenfalls nochmal fir eine Erinnerung ein (da sie leider notorisch vergesslich ist :-).

Als Benachrichtigungsvorlage wahlt sie die bereits in der Datenbank vorhandenen Vorlage
"Projektbesprechung"”.

Nachdem sie den EinfachenTermin gespeichert hat, wird dieser von der MyTISM-Anwendung
in eine interne Liste eingetragen. Am 22. Juli um 13:45 Uhr werden dann automatisch
entsprechende Benachrichtigungen an Alice, Bob und Claire verschickt und der einfache
Termin wird automatisch geldscht.

81

BO-basierter Termin

BO-basierte Termine werden einer Menge von Objekten zugeordnet, von denen entweder jedes
einen eigenen, festen Auslosungszeitpunkt bereits selbst definiert oder fir welche der BO-basierte
Termin jeweils einen eigenen, festen Auslosezeitpunkt berechnet.

Beispiel: Fur alle Mitarbeiter ist der jeweilige Geburtstag eingetragen. Die Mitarbeiter sollen
jedes Jahr eine automatische Gratulation erhalten (ob das wirklich so eine tolle Idee ist, sei mal
dahingestellt ...).

Allgemeine Eigenschaften festlegen

Geben Sie dem BO-basierten Termin einen kurzen aber aussagekraftigen Namen, und ggf. wenn
sinnvoll eine ldngere Beschreibung.

"Alte Alarme nur auslosen wenn nicht dlter als" und "Verantwortlicher"” konnen Sie, bei Bedarf, auf
dem Reiter "Erweitert" angeben.

Welche Objekte sollen "uberwacht" werden?

Legen Sie fest, fir welche Objekte der BO-basierte Termin auslosen soll. Dazu muss dem BO-
basierten Termin unter "Uberwache die Objekte ..." eine sog. BOMaske zugewiesen werden, die die
Menge der zu "beobachtenden” Objekte definiert.

Sie konnen hier entweder eine bereits vorhandene BOMaske auswahlen oder alternativ mittels des
Schreibstift-Icons auch eine neue, eigene Maske direkt erstellen. Fir die meisten
Anwendungszwecke ist es ausreichend, unter "... vom Typ" einfach einen Objekt-Typ (Entitit)
auszuwéhlen, womit dann alle Objekte dieses gewdhlten Typs vom BO-basierten Termin
"beobachtet" werden.

Die Erstellung von BOMasken wird im Abschnitt "BOMasken" im Kapitel "Rechteverwaltung" im
Administrator-Handbuch ausfiihrlich erklart, fiir weitere Informationen sehen Sie bitte dort nach.
Anzumerken ist hier noch, dass die Eigenschaft Attribut von BOMaske nur fir die Rechteverwaltung
notwendig ist und fiir das Alarmsystem nicht benutzt wird; evtl. hier eingetragene Werte werden
vom Alarmsystem einfach ignoriert.

Exkurs: Vor- und Nachteile der verschiedenen BOMasken-Typen

tldr: In den meisten Fallen sind O0QLBOMasken fiir BO-basierte Termine und
Wiedervorlagen die richtige Wahl.

o Fir Hinweise scheint nach aktuellem Stand die 0QLBOMaske ebenfalls die beste Wahl
Zu sein.
Immer: Falls wirklich ein Skript in der Maske benutzt werden muss, sollte dieses
moglichst schnell und mit moglichst wenig Aufwand auszufiihren sein.

82

#oqlbomasken

Die wenigsten Alarme wollen einfach alle Objekte eines bestimmten Typs tiberwachen. Daher ist es
normalerweise notwendig, zusdtzliche Kriterien, denen die Objekte genligen mussen, zu
definieren.

Bei normalen BOMasken ist das aber nur mit Benutzung eines Skripts moglich.

Aus diesem Grund ist es normalerweise vorteilhaft flir BO-basierte Termine und Wiedervorlagen
einen der anderen verfiigharen BOMasken-Typen einzusetzen, da das die Leistung des Systems
deutlich beeinflussen kann.

Insb. die Dauer der Berechnung der WiedervorlageStatus bzw. BOBasierterTerminStatus kann
hiermit teils sehr verringert werden.

Bei der Initialisierung oder Neuberechnung der WiedervorlageStatus bzw.
BOBasierterTerminStatus mussen oft sehr viele Objekte mit den Kriterien der Maske gepruft
werden. Die speziellen BOMasken-Typen GrooqlBOMaske und insb. 0QLBOMaske erlauben, diese
Prifungen effizienter durchzufiihren und insbesondere auch bereits bei der Abfrage der zu
prufenden Objekte aus der Datenbank diese zu filtern und die Menge damit moglichst klein zu
halten.

Bei der Initialisierung bzw. Neuberechnung dieser Statuswerte miissen im Normalfall alle
moglicherweise passenden Objekte aus der Datenbank geladen und dann mit der definierten
Maske uberpriift werden. Je nach Menge der Objekte und der Komplexitat der Prifung kann das
teils sehr lange dauern.

Mit Benutzung des richtigen BOMaske-Typs konnen aber sowohl das Abfragen und Laden aus der
Datenbank als auch die nachfolgende Uberpriifung der Objekte zum Teil deutlich optimiert
werden.

Skript

Generell gilt fir alle Alarmtypen: Wenn eine BOMaske ein Skript nutzt, ist das auf
o jeden Fall eher kostenintensiv, selbst wenn es sich um ein sehr einfaches Skript
handelt z.B. nur ein !Ldel.

Aufwéndigere Skripte, in denen z.B. Many-Relationen des BOs fir die Prifung

A heran gezogen werden (was oft eine Datenbankabfrage erfordert), konnen die
Systemleistung dann noch mal sehr deutlich verschlechtern und sollten moglichst
vermieden werden.

Falls Skripte mehrere Bedingungen priifen, sollten die schnell und mit wenig Aufwand
abzuprifenden Bedingungen auf jeden Fall am Anfang gepriift werden und falls eine davon bereits
nicht zutrifft, sollte das Skript bereits verlassen werden. Erst danach sollten weitere Prifungen, von
den "guinstigsten" hin zu den "teuersten", erfolgen.

83

#wiedervorlagestatus
#bobasierterterminstatus
#wiedervorlagestatus
#bobasierterterminstatus

Beispiel, wie die Priifungen durchgefiihrt werden sollten

// Ldel ist nur ein Boolean-Flag, sehr giinstig zu prifen:
if (bo.Ldel) {
return false

}
// String-Vergleich, schon etwas "teurer" aber noch nicht allzu aufwandig:
if (bo.Name == null || bo.Name != 'Gewiinschter Name') {
return false
}

// Many-Relationen abzufragen ist sehr teuer, da die Objekte jedesmal erst geladen
werden missen:
def hatBevorzugtesMitglied = bo.Mitglieder.find{ it.istBevorzugt }
if (!hatBevorzugtesMitglied) {
return false

}

return true

Grooql-BOMasken

Grooql-BOMasken erlauben, neben dem oben genannten Skript noch ein GrooqlScript anzugeben.

Die Bedingungen, die dieses GrooqlScript definiert, konnen bereits bei der Abfrage der Objekte aus
der Datenbank berticksichtigt werden. Damit wird die Menge der "nachtraglich" mit der Maske zu
priufenden Objekte bereits im Vorfeld moglichst klein gehalten. Viele Objekte, die nicht zur Maske
passen, werden dann erst gar nicht zur Prifung geladen.

Die Objekte, die dennoch aus der Datenbank geladen werden, werden dann in einem ersten Schritt
noch einmal mit dem definierten GrooqlScript gepruft.

Falls diese Prufung positiv ausfallt (das GrooqlScript liefert true zurtick) wird das Objekt danach -
wie bei einer normalen BOMaske auch - dann nochmal mit einem evtl. definierten Skript gepruft.
Dieses muss auch true zurtickgeben, damit das Objekt dann vom Alarm bertcksichtigt wird.

o Weitere Informationen zu Grooql finden sich im entsprechenden Handbuch-
Kapitel.
OQL-BOMasken

OQL-BOMasken erlauben, neben dem oben genannten Skript noch ein oder mehrere WhereClauses
(OQL-WHERE-Klauseln) anzugeben.

Diese OQL-Klauseln werden direkt bei der Abfrage der Objekte aus der Datenbank berticksichtigt.
Damit wird die Menge der "nachtraglich" mit der Maske zu prifenden Objekte bereits im Vorfeld
moglichst klein gehalten. Viele Objekte, die nicht zur Maske passen, werden dann erst gar nicht zur
Prifung geladen.

Nur die Objekte, die dennoch aus der Datenbank geladen werden, werden dann mit einem evtl.
definierten Skript gepruft.
Oft mag es aber maoglich sein, bereits alle gewtinschten Kriterien als WhereClauses zu definieren, so

84

#grooql
#grooql

dass gar kein Skript angegeben werden muss und die nachtrigliche Prifung mit Skript ganz
weggelassen werden kann.

Wann soll der BO-basierte Termin (fiir ein Objekt)
ausgelost werden?

Es gibt zwei Moglichkeiten, zu bestimmen, wann der BO-basierte Termin fiir ein bestimmtes Objekt
ausgelost wird: Durch Angabe eines Attributes, das einfach ausgelesen werden soll, oder durch ein
Skript, welches ausgewertet wird und fir jedes Objekt das Auslosedatum berechnet.

Auslosedatum aus Objekt-Attribut auslesen

Unter "... das Datum aus Attribut" konnen Sie den Namen eines Attributes der Objekte auswéhlen,
aus dem der Auslosezeitpunkt gelesen werden soll.

Es werden nur Attribute angezeigt, die einen Datumswert beinhalten, also im Schema mit Typ
Datetime (oder einem davon abgeleiteten Typ) definiert sind.

Wenn moglich sollten Sie diese Variante der Variante mit Skript (s.u.) vorziehen, da sie

1. weniger Schreibarbeit und keine Kenntnisse in Skriptprogrammierung erfordert
2. die Anforderungen an das System geringer sind und

3. direkt bei der Definition des Alarms Uberprift werden kann, ob alle Angaben korrekt sind - bei
einem Skript kann das normalerweise erst festgestellt werden, wenn zur Laufzeit bei der
Auswertung des Skripts ein Fehler auftritt.

Das Auslosedatum wird nur zu bestimmten Zeitpunkten (Erstellung des Alarms,
Start der Uberwachung fiir ein Objekt, Anderung des Ausldsedatum-Attributs oder
-Skripts) berechnet. Falls ein nicht-persistentes Attribut zur Ermittlung des

o Auslosedatums fiuir tiberwachte Objekte benutzt wird, kann es - je nachdem wie
das virtuelle Attribut seinen Wert bestimmt - sein, dass sich der Wert anderweitig,
z.B. zeitabhéingig, d&ndert. In solchen Fillen kann diese Anderung vom Alarm nicht
registriert werden und es wird weiter das bestehende Auslosedatum fir das
Objekt benutzt!

Auslosedatum mit Skript berechnen

Falls das einfache Auslesen eines Attributwertes fiir Thre Zwecke nicht ausreicht, konnen Sie
alternativ unter "... das Datum, das dieses Skript liefert, erreicht ist" ein Skript angeben, welches
das Datum fiir die Auslésung berechnet. Damit das entsprechende Eingabefeld angezeigt wird, darf
in der Auswahlbox kein Attribut angewdahlt sein (Eintrag "(kein Attribut, benutze Skript)" muss
ausgewadhlt sein).

Es existiert noch ein Bug, der sporadisch auftritt, so dass "... das Datum, das dieses

Skript liefert, erreicht ist" nicht angezeigt wird und die Eingabe eines Scripts nicht
moglich ist.

85

Das so definierte Skript fiihrt der BO-basierte Termin dann fiir jedes seiner zu tiberwachenden
Objekte aus. Dieses Skript muss dann einen Wert vom Typ java.util.Date zurtickliefern, welcher
angibt, wann der Alarm fiir das entsprechende Objekt ausgelost werden soll.

Wie das Skript diesen Zeitpunkt bestimmt, ist im Prinzip vollkommen egal; es konnte z.B.
theoretisch ebenfalls einfach nur den Wert eines Attributes des Objektes auslesen und diesen
zuruckgeben (wobei dann die Benutzung eines Skripts natiirlich nicht wirklich Sinn macht) oder
aber auch beliebig komplizierte Berechnungen ausfiihren, um das Auslésedatum fiir das aktuelle
Objekt zu errechnen.

Skript zur Berechnung des ndchsten Geburtstages:

kal = Calendar.getInstance()

kal.setTime(bo.getGeburtstag()) // Auf Geburtstag initialisieren.

kal.set(Calendar.HOUR_OF_DAY, 10) // Ausldsen um 10 Uhr morgens.

now = new Date()

while (kal.getTime().before(now)) { // Nachsten Termin finden.
kal.roll(Calendar.YEAR, true) }

return kal.getTime() // Als Date() zuriickgeben.

Zu beachten ist, dass das Skript moglichst schnell ein Ergebnis zurtuckliefern sollte, um das
Alarmsystem nicht unnotig zu verlangsamen.

AufSerdem muss das Skript in jedem Fall ein Objekt vom Typ java.util.Date zurtckliefern - also
nicht etwa gar keinen Wert oder einen Wert von einem anderen Typ! Sollte das passieren, oder
sollte irgendein Fehler im Skript auftreten, wird fur das entsprechende Objekt kein Alarm
ausgelost.

Das Auslosedatum wird nur zu bestimmten Zeitpunkten (Erstellung des Alarms,
Start der Uberwachung fiir ein Objekt, Anderung des Auslésedatum-Attributs oder
-Skripts) berechnet. Falls ein Skript zur Ermittlung des Auslésedatums fiir

o uberwachte Objekte benutzt wird, kann es - je nachdem wie das Skript seinen
Wert bestimmt - sein, dass sich der Wert anderweitig, z.B. zeitabhéingig, dndert. In
solchen Fillen kann diese Anderung vom Alarm nicht registriert werden und es
wird weiter das bestehende Auslésedatum fiir das Objekt benutzt!

Im Skript stehen folgende vordefinierte Variablen zur Verfigung:

bo

Das Objekt, fiir welches der Auslésezeitpunkt bestimmt werden soll.

bbt

Der BO-basierte Termin, zu dem das Skript gehort.

log
Ein Logger-Objekt (Name "de.ipcon.db.core.BOBasierterTermin") mit dem Debug- und andere
Meldungen ins Server-Log ausgegeben werden konnen.

Wie auch bei EinfachenTerminen kann auch bei BO-basierten Terminen Aufierdem noch unter "...

86

aber sende Benachrichtigungen ... frither (Vorwarnzeit)" eine Vorwarnzeit angegeben werden, die
die entsprechende Alarmauslosung dann noch friher stattfinden lasst.

Wer soll Benachrichtigungen erhalten und wie sollen
diese aussehen?

Die Konfiguration fir die Benachrichtigungen funktioniert hier genauso wie bereits fur einfache
Termine beschrieben.

Automatische Neuterminierung nach Auslosung

Normalerweise wird, analog zu den EinfachenTerminen, auch bei den BO-basierten Terminen fir
jedes uiberwachte Objekt nur ein einziges Mal ein Alarm ausgelost. In gewissen Féallen kann es aber
sinnvoll bzw. maéglich sein, dass fir ein Objekt der Alarm mehrfach zu verschiedenen Zeitpunkten
ausgelost werden kann und soll.

Durch Setzen von "Alarm bleibt auch nach Auslosung weiterhin aktiv" (auf dem Reiter "Erweitert")
kann bestimmt werden, dass nach der Auslosung des Alarms fir ein Objekt das Skript erneut
aufgerufen bzw. das angegebene Attribut des Objekts erneut ausgelesen wird um sofort einen
neuen Auslosezeitpunkt festzulegen, an dem dann der Alarm fiir dieses Objekt erneut ausgelost
werden soll.

Hierbei ist allerdings zu beachten, dass der Alarm fiir dieses Objekt nur dann wieder neu
eingeplant wird, wenn hierbei dann ein Datum zurtckliefert wird, welches in der Zukunft d.h. nach
dem aktuellen Auslosezeitpunkt liegt. Ansonsten konnte es zu Problemen kommen, da der Alarm
dann ohne Unterbrechung direkt hintereinander immer wieder ausgeldst wiirde.

Sollte das neue Datum ungultig sein (in der Vergangenheit liegen), so wird der Alarm fir das
aktuelle Objekt nicht mehr neu terminiert und in Zukunft nicht mehr ausgelost.

Wenn Sie die Variante mit Attribut verwenden, macht diese Funktion normalerweise keinen Sinn,
da ja immer nur ein Datum (welches dann nach der Auslosung garantiert in der Vergangenheit
liegt) zurtickgeliefert wird. Eine Ausnahme wadre, falls es sich um ein virtuelles Attribut handelt, da
diese ja normalerweise ebenfalls berechnete Werte zurtckliefern. Dies ist jedoch eher ein Thema
fir Fortgeschrittene und wird deshalb hier nicht weiter behandelt.

87

#alarme_benachrichtigungen_para
#alarme_benachrichtigungen_para

@ BO-basierter Termin [19915140] Geburtstagsgratulation >

Allgemein | Erweitert | aAlarmausldsungen

Sonstiges

Werantwortlicher ||efe Bighoss]
&larm bleibt auch nach Ausldsung weiterhin aktiv (ansonsten wird max. einmal pro Objekt ausgelsst) (¥
Alte Alarme nur auslsen wenn nicht alter als | 1w

Hange statt dem auslésenden Objekt an die Benachrichtigungen an ...

... das Objekt aus Attribut | (kein Attribut, benutze Skript)

1 // Wir wollen *gar keine* Anhénge c

... die Werte aus der Map die dieses Skript liefert

g Mitarbeite implementier 5
endNotificati .getTriggering)

Anhangen von (weiteren) Objekten

Normalerweise wird an die Benachrichtigungen von Alarmen das Objekt, aufgrund welcher der
Alarm ausgeldst wurde, angehangt. Es ist jedoch auch maoglich, nicht das Objekt selbst, sondern ein
von diesem Objekt referenziertes anderes Objekt oder gar beliebige Objekte stattdessen
anzuhangen.

Im Feld "... das Objekt aus Attribut" konnen Sie ein Attribut des eigentlichen Objekts wahlen, dessen
Wert statt dem auslosenden Objekt angehdngt werden soll. Es werden nur Relationen-Attribute
angezeigt, d.h. keine Attribute die nur einfache Zahlen oder Zeichenketten, etc. als Werte
beinhalten.

Wenn Sie mehrere oder andere Objekte anhdngen mochten, wéahlen Sie hier "(kein Attribut,
benutze Skript)" und konnen dann im darunter angezeigten Feld ein Skript eingeben, welches die
anzuhdngenden Objekte zusammenstellt und als eine Sammlung vom Java-Typ Map zurtiickliefert.

Skript das mehrere Werte an Benachrichtigungen anhdngt:

// FIXME Vermutlich kiirzere Alternative:

// ['Objekt selbst':bo, 'Mitarbeiter':bo.getMitarbeiter(), 'Personeneintrag des
Mitarbeiters':bo.getMitarbeiter().getPerson()] as Map

map = new HashMap()

map.put("Objekt selbst", bo)

map.put("Mitarbeiter"”, bo.getMitarbeiter())

map.put("Personeneintrag des Mitarbeiters", bo.getMitarbeiter().getPerson())
return map

88

o Wenn Sie ein Attribut auswahlen, oder ein Skript angeben, wird das eigentliche
auslosende Objekt nicht mehr angehangt.

Wenn Sie an eine Benachrichtigung gar keine Objekte anhdngen wollen, dann benutzen Sie ein
Skript, welches null oder eine leere Map zurtickgibt.

Gar nichts anhdngen:

return null

Es stehen folgende vordefinierte Variablen zur Verfigung:

alarm

Der Alarm, der ausgeldst wurde.

dateNow
Das Datum und die Zeit (als java.util.Date-Objekt) wann der Alarm ausgelost wurde.

log
Ein Logger-Objekt (Name "de.ipcon.db.alarm.AlarmNotificationManager") mit dem Debug- und
andere Meldungen ins Server-Log ausgegeben werden konnen.
Fir BO-basierte Termine, Hinweise und Wiedervorlagen, die sich ja immer auf BOs beziehen,
stehen noch zwei zuséatzliche Variablen zur Verfigung:

bo
Das Objekt (B0), welches erstellt/gedndert/geloscht wurde (kann null sein).

bot

Der BOT des BOs, fiir welches der Alarm ausgeldst wurde (kann evtl. null sein).

Fur Hinweise, die ja immer durch ein Ereignis ausgelost werden, ist schlussendlich noch eine
Variable definiert:

bt

Die BT, welche den Alarm ausgeldst hat.

BOBasierterTermin-Status

Wenn ein neuer BOBasierterTermin angelegt wird, legt MyTISM automatisch fiir alle iberwachten
Objekte sogenannte BOBasierterTermin-Status an, welche Daten beinhalten, die fiir die korrekte
Uberwachung und Auslésung des Alarms fiir die Objekte benotigt werden.

Je nach Anzahl der zu uberwachenden Objekte, kann das Anlegen der Status einige Zeit in
Anspruch nehmen. Der BOBasierteTermin wird erst dann aktiv, wenn alle bendtigten Status
angelegt wurden.

89

Hinweise

Hinweise sind dazu gedacht, eine Menge von Objekten zu tiberwachen und Benachrichtigungen zu
versenden, wenn an einem oder mehreren dieser Objekte bestimmte Anderungen durchgefiihrt,

bzw. solche Objekte erzeugt oder geloscht wurden.

Beispiel: Der Chef der Buchhaltung mochte benachrichtigt werden, sobald der Bestand eines
Kontos unter 100,- EUR sinkt.

@ Hinweis [19915292] Kontostand-Warner,

Allgemein | Erweitert | Alarmauslésungen
Allgemeine Infos

Name Kontostand-Warner

Beschreibung
Uberwache die Objekte ...
Kontostand-Warner (BOMaske)

.. Vom Typ | Konto

... fur die dieses Skript "wahr" liefert

Alarm fiir ein Objekt auslésen wenn ...

Einfach | Erweitert | skript

EELIEEYE
Trifft zu wenn ...

Attribut "Bestand" gesetzt wird auf einen Wert kleiner als "100".

hd
Bestand gesetzt wird auf einen Wert kleiner als 100

alle Kriterien missen zutreffen (ansonsten reicht bereits mindestens ein zutreffendes) [
Sende Benachrichtigungen an ...

... diese(n) Benutzer Chefbuchhalter]
... (und) diese Gruppe(n) L]
Erstelle die Benachrichtigungen mit ...
Kontostand-Warner (BenVorlage) [P T]

... diesem Betreff |Kontobestand = 100!

Der Bestand des Kontos ${bo.describe()} ist unter 100 gefallen.

... diesem Text

Allgemeine Eigenschaften festlegen

Geben Sie dem Hinweis einen kurzen aber aussagekréftigen Namen, und ggf. wenn sinnvoll eine
langere Beschreibung.

"Alte Alarme nur auslosen wenn nicht alter als" und "Verantwortlicher" konnen Sie, bei Bedarf, auf
dem Reiter "Erweitert" angeben.

90

Welche Objekte sollen "uberwacht" werden?

Die Menge der zu "uberwachenden" Objekte wird hier genau so wie fiir BO-basierte Termine
definiert.

Ein Objekt muss den hier definierten Kriterien entsprechen, nachdem die
gewiinschte Anderung eingetreten ist. FIXME! Aktuell kann man keinen Hinweis

° definieren, der intuitiv so funktioniert, wie in obigem Beispiel angegeben. Man
kann zwar definieren, dass der Bestand auf einen Wert < 100 gesetzt wird, das
springt aber dann immer an, da man nicht definieren kann "aber nur fir Konten,
bei denen der Bestand (vorher) >= 100 war" :-/ Siehe auch Ticket 103771604.

Wann soll der Hinweis ausgelost werden?

Nachdem definiert wurde, welche Objekte liberwacht werden sollen, muss festgelegt werden,
welche Ereignisse, z.B. Anderungen an diesen Objekten, den Hinweis ausldsen sollen.

Hierzu gibt es verschiedene Moglichkeiten, die im Folgenden beschrieben werden.

Aus technischen Griinden kann nicht garantiert werden, wie schnell auf die
gewiinschte Anderung reagiert wird. Die Auslésung erfolgt in der Regel zwar
wenige Sekunden, nachdem das Ereignis eingetreten ist, aber die genaue

o Reaktionszeit ist unbestimmt. Insbesondere eine sofortige Reaktion in Echtzeit ist
praktisch nicht moglich; wird die schnellstmogliche Reaktion auf Ereignisse
bendotigt, sollte die Behandlung in einer verifyOnServer()-Methode implementiert
werden (fortgeschrittenes Thema, Zugang zum Quellcode der Applikation ist dafiir
erforderlich).

Ignorierte BTs/Anderungen

BedingteAlarme (Hinweise, aber auch BOBasierteTermine, Wiedervorlagen) ignorieren einige
BTs/Anderungen, die vom Alarmsystem selber durchgefiihrt wurden, da es ansonsten zu
Endlosschleifen kommen konnte. Dies sind

* Das Speichern von neu angelegten AlarmAusloesung-Eintragen

* Das Versenden der Standardbenachrichtigungen durch Alarme

* Die Deaktivierung von Alarmen aufgrund von Fehlern

+ Anderungen aufgrund der Ausfiihrung des "Speichern-Fehler-Skripts"

* Das Speichern der auslosenden Transaktion and von aufgetretenen Fehlern am

AlarmAusloesung-Objekt

Die beteiligten Entitdten sind Alarm (inkl. aller Subklassen) sowie AlarmAusloesung (inkl. aller
Subklassen) sowie MyTISMBenachrichtigung wund MyTISMBenachrichtigungsauftrag (inkl. aller
Subklassen). Fiir diese Entititen kénnen also nicht alle Anderungen iiberwacht werden (wobei die
Anwendungsfélle dafir im Normalfall auch sehr beschrankt sein sollten).

91

#alarme_bobasiertertermin

BTs/Anderungen die anderweitig aufgrund der Auslésung eines Alarms erzeugt wurden - insb.
durch das beim Auslosen ggf. ausgefiihrte Skript - konnen dagegen von anderen Alarmen "erkannt"
und darauf reagiert werden.

Auslosung bei beliebiger Anderung, Erstellen oder Léschen von Objekten
(Unter-Reiter "Einfach")

Diese oft benutzten, einfachen Fidlle konnen einfach durch Aktivieren der entsprechenden
Checkbox definiert werden:

"... ein tiberwachtes Objekt erzeugt wurde" 16st den Hinweis aus, sobald eines oder mehrer neue
Objekte, auf die die fiir den Hinweis definierte Maske (s.0.) passt, erstellt wurden.

"

» "... ein lberwachtes Objekt gedndert wurde" 16st den Hinweis aus, sobald an einem oder
mehreren der tiberwachten Objekte irgendeine Anderung durchgefiihrt wurde; sei es z.B., dass
der Wert eines Attributes gesetzt, geldscht oder gedndert wurde oder ein Objekt in einer
Relation hinzugefligt oder geloscht wurde.

 "... ein tiberwachtes Objekt geloscht wurde" 16st den Hinweis aus, sobald eines oder mehrere der
uberwachten Objekte geloscht wurden.

 "... ein liberwachtes Objekt erschienen ist" 16st den Hinweis aus, sobald ein existierendes Objekt
so geandert wurde, dass es jetzt in die Menge der vom Alarm tiberwachten Objekte passt.

 "... ein liberwachtes Objekt verschwunden ist" 10st den Hinweis aus, sobald ein existierendes und
vom Alarm tliberwachtes Objekt so gedndert wurde, dass es jetzt nicht mehr in die Menge der
vom Alarm uiberwachten Objekte passt.

Auslosung mittels Auslosekriterien (Unter-Reiter "Erweitert")

Mit den sog. Auslosekriterien gibt es eine recht einfache aber sehr flexible Mdglichkeit, festzulegen,
welche Anderungen erfolgt sein miissen, damit der Hinweis ausgelést wird.

Mittels der Auslosekriterien geben Sie an, fiir welche Attribute ("Felder" oder "Eigenschaften" der
Objekte) welche Anderungen oder Ereignisse eingetreten sein miissen, damit der Hinweis fiir das
Objekt ausgeldst wird. Sie konnen fir jeden Hinweis beliebig viele Auslosekriterien festlegen.

Jedes dieser Auslosekriterien hat drei wichtige Eigenschaften:

Attribut (erstes Feld)

Hiermit definieren Sie, an welchem Attribut der iiberwachten Objekte eine Anderung erfolgt sein
muss. Die Eintrdge in der Auswahlbox geben alle Attribute an, welche fir die vom Alarm
uberwachten Objekte verfiigbar sind - mit Ausnahme von virtuellen und nicht-persistenten (weil
diese aus technischen Griunden hier nicht gepriift werden kénnen) und System-Attributen.

Anderungstyp (zweites Feld)

Hiermit definieren Sie, wie sich das oben angegebene Attribut verdndert haben muss, damit der
Hinweis ausgelost wird. Je nach Typ des ausgewdhlten Attributs werden hier nur passende
Anderungstypen aufgefiihrt.

Wert (drittes Feld, ist ausgeblendet wenn nicht anwendbar)

Manche Anderungstypen, wie z.B. "wird gesetzt auf den Wert", erfordern einen Vergleichswert;

92

diesen konnen sie hier angeben. Wenn ein Anderungstyp keinen Vergleichswert erfordert, wird
dieses Feld automatisch ausgeblendet.

Die Werte konnen so eingegeben werden, wie Sie sie auch normalerweise in anderen MyTISM-
Formularen angeben. Fir Datums- und Wahrheitswerte wird ebenfalls ein passendes
Eingabefeld angezeigt. Fiir Relationen (also Attribute die Verweise/Links auf ein oder mehrere
andere Objekte abbilden) konnen Sie das gewiinschte Vergleichsobjekt mittels Popup
auswahlen. Allerdings ist die Unterstiitzung fiir Relationen hier noch liickenhaft, so kann z.Zt.
z.B. noch nicht gepriift werden, ob ein Objekt zu einer Mehrfach-Relation hinzugefligt oder
entfernt wurde; dies ist z.Zt. nur mit einem Skript (s.u.) moglich.

Wenn Sie informiert werden wollen, wenn der Kontostand Ihres Kontos unter 100,- EUR
gesunken ist, setzen Sie Attribut (Feld 1) auf Kontostand, Anderungstyp (Feld 2) auf "wird
gesetzt auf Wert kleiner als”" und Wert (Feld 3) auf 100.

Wenn Sie iiber jede Anderung Thres Kontostandes informiert werden wollen, setzen sie
Anderungstyp (Feld 2) auf "wird in irgendeiner Weise geindert”; in diesem Fall brauchen Sie
keinen Vergleichswert anzugeben und das Wert-Feld wird automatisch ausgeblendet.

Wenn Thnen die vordefinierten Mdoglichkeiten, z.B. die verfiigharen Vergleichsmoglichkeiten der
Anderungstypen, nicht ausreichen, steht Thnen noch die Méglichkeit zur Verfiigung, mittels eines
eigenen Skript praktisch jeden beliebigen Vergleich zu realisieren, auch wenn hierzu ein paar
Kenntnisse in Skript-Programmierung und etwas Wissen Uber die internen Abldufe in einer
MyTISM-Anwendung notig sind.

Das Skript wird fiir jeden Transaktionsschritt (BP) der aktuellen Transaktion (BT), in der das
angegebene Attribut gesetzt, geloscht oder gedndert wurde, einmal ausgefiihrt. Wenn das Skript fur
mindestens eine der BPs "true" zuruckliefert, gilt das Ausldsekriterium als erfillt; wenn es fiir alle
BPs nur "false" liefert als "nicht erfullt".

Im Skript stehen folgende vordefinierte Variablen zur Verfiigung:

bp
Das BP-Objekt, welches gerade tberpriift wird.

bo
Das Objekt (B0), welches erstellt/gedndert/geloscht wurde (kann null sein).

valueNew

Der neue/gesetzte Wert, aus dem BP-Objekt (als Java-Objekt! Kann null sein).

valueOld

Der alte/vorher gesetzte Wert, aus dem BP-Objekt (als Java-Objekt! Kann null sein).

valueCompare

Der von Ihnen eingegebene (Vergleichs)Wert (bereits umgewandelt in Java-Objekt! Kann null
sein wenn Sie keinen Wert eingegeben haben bzw. der gewihlte Anderungstyp keinen

93

Vergleichswert erfordert und das Feld ausgeblendet war).

schema
Das Schemal fir die aktuelle MyTISM-Installation.

attribute

Das beim Auslosekriterium angegebene Attributel (nicht der Name, sondern das Java-Objekt!
Kann null sein).

type
Der (BOType des beim Auslosekriterium angegebenen Attributes (kann null sein).

kriterium

Das AusloeseKriterium-Objekt (wird eher selten benotigt).

log

Ein Logger-Objekt (Name "de.ipcon.db.core.AusloeseKriterium") mit dem Debug- und andere
Meldungen ins Server-Log ausgegeben werden konnen.

Bitte verwechseln Sie dieses Skript nicht mit der unten erwdhnten Mdoglichkeit
eines "globalen" Ausloseskript fiir den gesamten Hinweis. Das oben beschriebene

o Skript stellt nur eine Option dar, weitere Vergleichsmoglichkeiten fur
Auslosekriterien zu realisieren. Es ist nur ein Teil dieses einzelnen
Auslosekriteriums und bezieht sich immer nur auf Anderungen an einem
einzelnen Attribut.

Auslosung mittels Ausloseskript (Unter-Reiter "Skript")

Ein Ausloseskript gibt Ihnen vollkommene Freiheit, um die Auslosung eines Hinweises zu
bestimmen; um dieses Feature benutzen zu kdnnen, mussen sie allerdings tiber gewisse Kenntnisse
in Skript-Programmierung und etwas Wissen tber die interne Struktur und Abldufe in MyTISM-
Anwendungen verfiigen.

Mittels eines Ausloseskripts konnen Sie in jeder von Ihnen gewtinschten Art und Weise tiberprifen,
ob der Hinweis ausgeldst werden soll, oder nicht. Wenn das Skript "true" zurtickliefert, wird der
Hinweis ausgeldst; bei "false" nicht.

if (bo.PreisInCentNN.intValue() > bo.MaxPreisInCentNN.intValue())
if (!bo.PreisueberschreitungErlaubtNN.booleanValue())
return true
return false

Im Skript stehen folgende vordefinierte Variablen zur Verfiigung:

bo
Das Objekt (BO) welches erstellt/gedndert/geloscht wurde.

94

schema
Das Schemal fiir die aktuelle MyTISM-Installation.

bp
Das BP-Objekt, welches gerade tiberprift wird.

kriterium

Das AusloeseKriterium-Objekt (eher uninteressant).

log

Ein Logger-Objekt (Name "de.ipcon.db.core.AusloeseKriterium") mit dem Debug- und andere
Meldungen ins Server-Log ausgegeben werden konnen.

Das Skript wird fir jeden Transaktionsschritt (BP) einmal ausgefiihrt, d.h. beim Speichern eines
Formulars im Normalfall mehrmals, wenn sich mehrere Werte gedndert haben. Es reicht in diesem
Fall, wenn das Skript mindestens einmal "true" zurtckliefert, um die Auslésung des Hinweises zu
veranlassen.

Mindestens eines oder alle gleichzeitig?

Wenn Sie mehrere Kriterien fir die Auslosung des Hinweises angeben - also "... ein tiiberwachtes
Objekt erzeugt wurde", "... ein uberwachtes Objekt gedndert wurde", "... ein iberwachtes Objekt
geloscht wurde", ggf. Auslosekriterien, ggf. ein Ausloseskript - so wird der Hinweis normalerweise
bereits ausgelost, wenn mindestens eines dieser Kriterien zutrifft (die Kriterien sind mit "oder"

verknupft).

Mochten Sie, dass alle Kriterien gleichzeitig zutreffen miussen, damit die Auslésung erfolgt, so
aktivieren sie die Checkbox "Alle Kriterien mussen zutreffen".

Sie haben zwei AusloseKriterien definiert: * Kontostand, "wird gesetzt auf einen Wert kleiner als",
100 und * Kontostand, "wird gesetzt auf einen Wert grofder als”, 50 .

Im Normalfall wiirde der Hinweis immer auslosen, wenn sich der Kontostand dndert, da jede Zahl
entweder kleiner als 100 oder grofier als 50 ist. Wenn Sie aber "Alle Kriterien missen zutreffen"
setzen, mussen beide Kriterien zutreffen und der Hinweis wird nur ausgeltst, wenn der Kontostand
auf einen Wert grofer als 50 und Kkleiner als 100 - also z.B. auf 80 - gesetzt wird.

Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?

Die Konfiguration fiir die Benachrichtigungen funktioniert hier genauso wie bereits fiir einfache
Termine beschrieben.

Von wem muss die Anderung stammen?

Wenn der Hinweis nur ausgelést werden soll, wenn eine Anderung von einem bestimmten
Benutzer bzw. einem Mitglied einer bestimmten Gruppe durchgefiihrt wurde, konnen Sie dies mit
"... diesem Benutzer" und "... (oder) einem Mitglied dieser Gruppe" angeben.

Wenn Sie fiir beides einen Wert eintragen, reicht es aus, wenn die Anderung von dem Benutzer

95

#alarme_benachrichtigungen_para
#alarme_benachrichtigungen_para

oder einem Mitglied der Gruppe gemacht wurde; es ist also nicht erforderlich, dass der angegebene
Benutzer auch noch Mitglied der angegebenen Gruppe ist.

Wenn Sie fir eines der beiden Kriterien keine Angabe machen, wird nur fiir das andere Kriterium
iiberpriift, ob die Anderung von diesem Benutzer bzw. dieser Gruppe gemacht wurde (was dann
zutreffen muss, damit die Anderung "gewertet" wird). Wenn Sie fiir beide Eigenschaften keinen
Wert angegeben haben, ist vollkommen egal, von welchem Benutzer oder welcher Gruppe die
Anderung stammt und die sonstigen Auslosekriterien werden immer tiberpriift.

! Hinweis [19915292] Kontostand-Warner x

Allgemein | Enweitert | Alarmausldsungen

Auslésekriterien nur priiffen wenn Aktion durchgefiihrt wurde von ...

... diesem Benutzer 5]

... (oder) einem Mitglied dieser Gruppe 1]
Sonstiges

Verantwortlicher Chefbuchhalter [is]

Alte Alarme nur ausldsen wenn nicht alter als | 1w
Uberwachung starten ab |01.10.2011 00:00:00 i

Hange statt dem auslésenden Objekt an die Benachrichtigungen an ...

... das Objekt aus Attribut | (kein Attribut, benutze Skript)

... die Werte aus der Map die dieses Skript liefert

Sende Benachrichtigungen mittels dieses Skripts

Ab wann ist der Hinweis aktiv?

Wie bereits frither erwdahnt werden Alarme normalerweise sofort aktiv, sobald sie das erste Mal
gespeichert werden. Hinweise beginnen also direkt nachdem sie erzeugt wurden, die ihnen
zugewiesene Menge von Objekten zu uberwachen und bei Eintreten der durch ihre
AenderungsKriterien definierten Anderungen Alarme auszuldsen.

Es ist jedoch auch moglich anzugeben, dass der Hinweis erst zu einem spéteren Zeitpunkt aktiv
wird. Bei "Uberwachung starten ab" (Reiter "Erweitert”) kénnen Sie ein Datum angeben, ab
welchem der Hinweis aktiv werden soll. Liegt dieses Datum in der Zukunft, werden erst die ab
diesem Datum erfolgenden Anderungen iiberpriift und fiir die Ausléosung beriicksichtigt. Wenn Sie
hier keinen Wert angeben oder das angegebene Datum in der Vergangenheit liegt, wird der
Hinweis ganz normal sofort aktiv.

96

Wiedervorlagen

Evtl. sind Wiedervorlagen nicht genau das, was Sie bendtigen bzw. was Sie sich
darunter vorstellen. Wenn Sie z.B. in Threr Anwendung Dokumente mit einem

0 Attribut WiedervorlageAm haben, und Sie mochten, dass jeweils an den dort
eingetragenen Daten ein Alarm ausgelost bzw. eine Benachrichtigung verschickt
wird, dann konnen Sie das mit einem BoBasierterTermin realisieren.

Wiedervorlagen sind sozusagen das Gegenteil der Hinweise. Alarme werden hier ausgelost, wenn
innerhalb einer bestimmten, festgelegten Zeitspanne an einer Menge von uiberwachten Objekten
bestimmte Anderungen nicht durchgefiihrt wurden.

Beispiel: Der Projektleiter mochte benachrichtigt werden, wenn sich der Status eines Projekts
zwei Tage lang nicht gedndert hat.

@ Wiedervorlage [19915328] |Projektstatus-Warner, - 0O X

| Allgemein | Erweitert | Alarmauslésungen

Allgemeine Infos
Mame Projektstatus-Warner
Beschreibung
ilberwache die Objekte ...
Projektstatus-Warner (EOMaska) O B
... vom Typ |Project |

... fur die dieses Skript "wahr" liefert

Alarm fiir ein Objelkt auslésen wenn ...

... die Ausldsekriterien | 2d NICHT zutrafen.
Der Alarm wird (fir ein Objekt) NICHT ausgeldst wenn in der oben angegebenen Zeitspanne ...
| Einfach | Erweitert | Skript

... ein iberwachtes Objekt geandert wurde [~

Alle Kriterien missen zutreffen (ansonsten reicht bereits mindestens ein zutreffendes) [

Sende Benachrichtigungen an ...

... diese(n) Benutzer Projektleiter,Jefe Bigboss]
.. tund) diese Gruppein) 1]

Erstelle die Benachrichtigungen mit ...

Projektstatus-Warner (Benvorlage) OB ¢ Ih

... diesem Betreff Projekt steht seit zwei Tagen!
Der Status des Projekts ${bo.getMame()} wurde zwei Tage lang nicht aktualisiert,

... dizsem Text

97

#alarme_bobasiertertermin

Allgemeine Eigenschaften festlegen

Geben Sie der Wiedervorlage einen kurzen aber aussagekraftigen Namen, und ggf. wenn sinnvoll
eine langere Beschreibung.

"Alte Alarme nur auslosen wenn nicht alter als" und "Verantwortlicher" konnen Sie, bei Bedarf, auf
dem Reiter "Erweitert" angeben.

Welche Objekte sollen "uberwacht" werden?

Die Menge der zu "uberwachenden" Objekte wird hier genau so wie fiir BO-basierte Termine
definiert.

Wann soll die Wiedervorlage ausgelost werden?

Nachdem definiert wurde, welche Objekte tiberwacht werden sollen, muss festgelegt werden,
welche Ereignisse, z.B. Anderungen an diesen Objekten, verhindern sollen, dass die Wiedervorlage
ausgelost wird.

Die Definition der Kriterien, die gepriift werden, erfolgt hier genau so wie fiir die Hinweise.

Nachdem die Wiedervorlage angelegt wurde, wartet sie fir jedes der von ihr "tiberwachten"
Objekte eine festgelegte Zeit.

* Tritt innerhalb dieser Zeitspanne das gewtinschte (durch die Kriterien definierte) Ereignis ein
oder wird die gewiinschte (durch die Kriterien definierte) Anderung an einem Objekt
durchgefiihrt, wurde damit die Auslosung der Wiedervorlage fir das betreffende Objekt
verhindert und die Uberwachung fiir dieses Objekt wird beendet (auler wenn "Alarm bleibt
auch nach Kriterienerfiillung weiterhin aktiv" gesetzt ist).

* Bleibt jedoch das gewtinschte Ereignis innerhalb dieser Zeitspanne aus oder tritt die
gewiinschte Anderung fiir ein Objekt nicht ein, so 16st die Wiedervorlage am Ende der
Zeitspanne fiir das betreffende Objekt Alarm aus. Dann beendet sie die Uberwachung fiir das
betreffende Objekt (aufer wenn "Alarm bleibt auch nach Auslosung weiterhin aktiv" gesetzt ist).

Wie oben erwahnt, wird das genaue Verhalten der Wiedervorlage mittels dreier Einstellungen
definiert:

Inaktivitatszeit "... die Auslosekriterien ... NICHT zutrafen."

Dies gibt die Zeitspanne an, welche die Wiedervorlage auf das Eintreten der Ereignisse bzw.
Anderungen warten soll.

Beispiel: Wollen Sie benachrichtigt werden, wenn sich an einem Projekt zwei Tage nichts getan
hat, so geben Sie hier "2d" an.

Neuterminierung nach Aufschub "Alarm bleibt auch nach Kriterienerfillung weiterhin
aktiv", Reiter "Erweitert"

98

#alarme_bobasiertertermin
#alarme_hinweis_ausloesung
#alarme_wiedervorlage_inaktivitaetszeit

Normalerweise wird die Uberwachung eines Objektes beendet, nachdem die definierte
Anderung fiir dieses Objekt innerhalb der Inaktivititszeit eingetreten ist und die Wiedervorlage
fir dieses Objekt damit verhindert wurde.

Wollen Sie jedoch, dass die Uberwachung auch weiter fortgefiihrt wird, obwohl das gewtiinschte
Ereignis oder die gewiinschte Anderung einmal eingetreten ist, so setzen sie dieses Flag. Wenn
das Flag gesetzt ist, heifdt das im Endeffekt, dass das gewtinschte Ereignis oder die gewtiinschte
Anderung regelmifig immer wieder eintreten muss, um zu verhindern, dass die Wiedervorlage
letztendlich ausgeldst wird.

Beispiel: Der Fertigstellungsstand eines Projektes muss mindestens einmal jeden Tag
aktualisiert werden.

Neuterminierung nach Auslosung "Alarm bleibt auch nach Auslosung weiterhin aktiv", Reiter
"Erweitert"

Normalerweise wird die Uberwachung eines Objektes ebenfalls beendet, nachdem die definierte
Anderung fiir dieses Objekt innerhalb der Inaktivitdtszeit nicht eingetreten ist und die
Wiedervorlage fiir dieses Objekt ausgelost wurde, d.h. fiir jedes iiberwachte Objekt 1ost die
Wiedervorlage nur ein einziges Mal einen Alarm aus (es gibt gewisse Ausnahmen, s.u.).

Wollen Sie jedoch, dass die Uberwachung auch danach weiter fortgefiihrt wird, so setzen sie
dieses Flag. Wenn das Flag gesetzt ist, heifst das im Endeffekt, dass regelméafiig wieder nach
erneutem Ablauf der Inaktivitatszeit ein Alarm fiir das betreffende Objekt ausgeldst wird.

Beispiel: Wenn eine Rechnung nicht innerhalb eines Tages bezahlt wurde, soll an jedem
folgenden Tag eine Benachrichtigung dartber versandt werden, nicht nur einmal.

Wer soll Benachrichtigungen erhalten und wie sollen
diese aussehen?

Die Konfiguration fiir die Benachrichtigungen funktioniert hier genauso wie bereits fiir einfache
Termine beschrieben.

Wiedervorlage-Status

Wenn eine neue Wiedervorlage angelegt wird, legt MyTISM automatisch fiir alle tiberwachten
Objekte sogenannte Wiedervorlage-Status an, welche Daten beinhalten, die fiir die korrekte
Uberwachung und Auslésung des Alarms fiir die Objekte benotigt werden.

Je nach Anzahl der zu uberwachenden Objekte, kann das Anlegen der Status einige Zeit in
Anspruch nehmen. Die Wiedervorlage wird erst dann aktiv, wenn alle bendtigten Status angelegt
wurden.

99

#alarme_benachrichtigungen_para
#alarme_benachrichtigungen_para

Benachrichtigung bei Alarm-Auslosung

Wenn ein Alarm ausgelost wird, werden nacheinander drei verschiedene Mechanismen in Gang
gesetzt:

1. Die hartkodierte trigger()-Methode der Klasse, zu der der Alarm gehort, wird aufgerufen.
2. Ein evtl. fiir den Alarm eingetragenes Benachrichtigungsskript wird ausgefuhrt.

3. Die Standard-Benachrichtigungen werden ausgefiihrt.

Hartkodierte trigger()-Methode

Jede Subklasse der Alarm-Basisklasse Alarm erbt deren trigger()-Methode. Bei der Auslosung eines
Alarms wird diese Methode automatisch vom Alarmsystem aufgerufen und kann beliebige
Aktionen ausfiihren.

Wenn die Methode "true" zuruckliefert, wird angenommen, dass alle bei der Auslésung
erforderlichen bzw. gewlnschten Aktionen vollstindig durchgefihrt wurden; in diesem Fall
werden weder das Benachrichtigungsskript noch die Standard-Benachrichtigungen ausgefihrt.

Bei allen standardmassig in MyTISM implementierten Alarm-Klassen (also den in dieser
Dokumentation erwdhnten) tut diese Methode nichts und liefert "false" zuriick, so dass mit der
Bearbeitung fortgefahren wird; sie brauchen sich in diesem Fall also keine weiteren Gedanken
hierzu zu machen. Es kann allerdings sein, dass fir Thre MyTISM-Installation spezielle Subklassen
von Alarm existieren, die eine "richtige" trigger()-Methode besitzen; wenn dies der Fall ist, kann
IThnen Thr MyTISM-Administrator weitere Informationen hierzu geben.

Benachrichtigungsskript "Sende Benachrichtigungen
mittels dieses Skripts", Reiter "Erweitert"

Wenn Thnen die Standard-Moglichkeiten (s.u.) fiir Benachrichtigungen nicht ausreichen, konnen Sie
mit Hilfe der Benachrichtigungsskript-Eigenschaft der Alarme weitere Tatigkeiten ausfiihren
lassen.

Sie konnen hier ein Stiick Groovy-Code angeben, das in der von Ihnen gewiinschten Art und Weise
Benachrichtigungen auslost oder auch andere Aktionen ausfiihrt.

Uber die api Variable konnen transaktionelle Anderungen aufgezeichnet werden, die bei der
Auslosung des Alarms automatisch gespeichert werden. Via api.getTransaction() bekommt man
eine Transaction, um Objekte zu laden und diese zu includen, um Anderungen an diesen
aufzuzeichnen. Ein Aufruf von api.getBO(Long, C(lass) initialisiert ebenfalls bereits eine neue
Transaction, um das Objekt fir die tibergebene Id zu laden.

o Ein erneuter Aufruf von api.getTransaction gibt immer wieder die gleiche
Transaction zuriick, da es nur eine im Kontext des Benachrichtigungsskripts gibt.

100

http://www.groovy-lang.org/

Bei Systemen, in denen Alarme auch auf Anderungen durch andere Alarme
° getriggert werden konnen, muss man sehr gut aufpassen, dass dabei keine
unerwinschten Schleifen entstehen.

Wenn das Groovy-Skript "true" zurtckliefert, wird angenommen, dass alle erforderlichen Aktionen
durchgefiihrt wurden und die Standard-Benachrichtigungen werden nicht mehr ausgelést. Wenn
das Skript "false" zurtickliefert, werden die Standard-Benachrichtigungen zuséatzlich zu allen evtl.
bereits vom Skript gemachten Aktionen auch noch ganz normal ausgelost.

Sollte im Skript ein Fehler auftreten (d.h. eine Exception geworfen werden) wird die Bearbeitung
ebenfalls abgebrochen, d.h. auch in diesem Fall werden die Standard-Benachrichtigungen nicht
mehr ausgelost.

Beispiel, Mitarbeiter implementiert NotificationReceiverlI:

api.getLogger().info("Alarm " + alarm + " wurde um " + dateNow + " ausgeloest!")
api.sendNotification(api.getBOById(idB0O, de.beispielprojekt.bo.Mitarbeiter.class))

Beispiel, Empfiinger hingt per Attribut "Benutzer" an auslésendem Objekt:

api.sendNotification(getTriggeringBO().getBenutzer())

Beispiel, Mail an beliebige e-Mail-Adresse senden:

api.sendNotificationByEmail("nobody@example.com")

Beispiel, Mail senden und Mailversanddatum am auslosenden BO setzen:
import com.oashi.m.bo.Rechnung

def r = api.getTriggeringBO() as Rechnung

def tx = api.getTransaction("Mailversanddatum via Alarm setzen.")
r = tx.include(r)

r.Mailversanddatum = new Date()

return false // do send default notifications

Es stehen die folgenden vordefinierten Variablen zur Verfiigung:

alarm

Der Alarm, der ausgeldst wurde.

dateNow

Das Datum und die Zeit (als java.util.Date-Objekt) wann der Alarm ausgeldst wurde.

api

Ein Objekt vom Typ BedingterAlarmBenachrichtigungsScriptAPI (fiir Hinweise und

101

Wiedervorlagen), BOBasierterTerminBenachrichtigungsScriptAPI (fiir BO-basierte Termine) oder
EinfacherTerminBenachrichtigungsScriptAPI (fir einfache Termine) welches niitzliche Methoden
zur Verfugung stellt.

log

Ein Logger-Objekt (Name "de.ipcon.db.alarm.BenachrichtigungsScriptAPI", das gleiche Objekt
was auch api.getLogger() liefert) mit dem Debug- und andere Meldungen ins Server-Log
ausgegeben werden konnen.

Fir BO-basierte Termine, Hinweise und Wiedervorlagen, die sich ja immer auf BOs beziehen,
stehen noch zwei zuséatzliche Variablen zur Verfugung:

idBO

Der ID des BOs, fur welches der Alarm ausgelést wurde.

bot

Der BOT des BOs, fur welches der Alarm ausgeldst wurde (kann evtl. null sein).

Fir Hinweise und Wiedervorlagen, die ja immer durch ein Ereignis ausgelost werden, ist
schlussendlich noch eine Variable definiert:

bt

Die BT, welche den Alarm ausgeldst hat.

@& BO-basierter Termin [19915140]/Geburtstagsgratulation 4

Allgemein | Enweitert | Alarmauslésungen

Sonstiges
Werantwortlicher ||efe Bighoss]
alarm bleibt auch nach Ausldsung weiterhin aktiv (ansonsten wird max. einmal pro Objekt ausgelost) W
Alte Alarme nur auslésen wenn nicht alter als | 1w
Hange statt dem auslésenden Objekt an die Benachrichtigungen an ...

... das Objekt aus Attribut | (kein Attribut, benutze Skript)
return null 1

~ wollen *gar keine* Anhange.

... die Werte aus der Map die dieses Skript liefert

/1 Mitarbeiter
apl.sendNotification

Standard-Mechanismus

Wenn ein Alarm ausgeldst wird, werden alle dafiir eingetragenen Benutzer benachrichtigt (sofern
das Benachrichtigungssystem aktiviert und richtig konfiguriert ist).

102

Ein Benutzer erhéalt fiir eine Alarm-Auslésung immer nur eine Benachrichtigung, auch wenn z.B.
fir einen Alarm mehrere Gruppen eingetragen wurden und der Benutzer Mitglied in mehreren
dieser Gruppen ist oder der Benutzer selbst ebenfalls fiir den Alarm eingetragen wurde.

Der Betreff und der Text der entsprechenden Benachrichtigungen kénnen fiir jeden Alarm eigens
definiert werden. Die Definition der Textvorlagen erfolgt im Format GSP (Groovy Server Pages); die
eigentlichen Texte werden bei der Auslosung dynamisch aus diesen Vorlagen generiert.

Eine genaue Beschreibung von GSP wirde hier zu weit fihren; fir Informationen dazu siehe
http://groovy.codehaus.org/Groovy+Templates. Hier nur ein kleines

Beispiel:

Dies ist eine Benachrichtiqgung fuer ${benutzer.getName()}!
Der Alarm ${alarm.getName()} wurde am ${api.formatDate(dateNow, "dd.MM.yyyy")} um
${api.formatDate(dateNow, "HH:mm:ss")} Uhr ausgeloest.

Folgende vordefinierte Variablen stehen zur Verfiigung:

benutzer

Der Benutzer, fir den die Benachrichtigung gedacht ist; kann null sein, wenn die
Benachrichtigung mittels des Benachrichtigungsskripts erzeugt wurde und nicht an einen
Benutzer, sondern ein anderes Objekt verschickt wurde.

empfaenger

Das Empfaenger-Objekt, fiir das die Benachrichtigung gedacht ist; ist immer gesetzt. Wenn die
Benachrichtigung an einen Benutzer ging, ist dieser Wert gleich dem Wert der Variable
"benutzer".

alarm

Der Alarm, der ausgeldst wurde.

dateNow

Das Datum und die Zeit (als java.util.Date-Objekt) wann der Alarm ausgeldst wurde (oder
genauer: Wann das MyTISMBenachrichtigungs-Objekt erstellt wurde; diese Zeiten konnen sich
um einige Sekunden unterscheiden).

api
Ein Objekt vom Typ TemplateScriptAPI, welches niitzliche Methoden zur Verfiigung stellt.

Fir BO-basierte Termine, Hinweise und Wiedervorlagen, die sich ja immer auf BOs beziehen, steht
noch eine zusatzliche Variable zur Verfiigung:

bo

Das Objekt (BO) fiir welches der Alarm ausgeldst wurde.

Fir Hinweise und Wiedervorlagen, die ja immer durch ein Ereignis ausgelost werden, ist
schlussendlich noch eine Variable definiert:

103

http://groovy.codehaus.org/Groovy+Templates

bt

Die BT, welche den Alarm ausgeldst hat.

Schliesslich konnen spezielle Unterklassen von Alarmen evtl. auch noch weitere Variablen zur
Verfligung stellen.

Wenn mehrere von einem Hinweis oder einer Wiedervorlage tiberwachte BOs
o erstellt, gedndert oder geloscht wurden, wird fiir jedes dieser BOs tUberpriift, ob

eine Auslosung erfolgt; wenn ja wird flr jedes entsprechende Objekt (B0) eine
Benachrichtigung versendet.

104

Logging/Historie und AlarmAusloesungen
-Objekte

Jede Auslosung eines Alarms wird automatisch "mitgeloggt". Fur jede Auslosung wird ein Objekt
vom Typ AlarmAusloesung angelegt, mit den Informationen, welcher Alarm wann ausgeldst wurde;
fir BO-basierte Termine, Hinweise und Wiedervorlagen Auferdem noch, welches Objekt die
Auslosung verursacht hat.

Die AlarmAusloesungen kénnen z.B. iiber das Lesezeichen "Alarme AlarmAusloesungen"” eingesehen
werden.

105

Sonstige Infos

"Verpasste" bzw. "Verspatete" Auslosung

Es kann passieren, das ein Alarm eigentlich zu einem bestimmten Zeitpunkt hatte ausgelost werden
sollen, dies jedoch nicht passiert ist, weil zu diesem Zeitpunkt das Alarmsystem deaktiviert war.

In solchen Fillen wird der Alarm dann normalerweise sofort ausgelost, sobald das Alarmsystem
wieder aktiviert wird.

Dieser Fall kann z.B. auch dann eintreten, wenn bei einer MyTISM-Installation mit
synchronisierenden Instanzen eine Anderung, die z.B. einen Hinweis auslost, auf einer der
synchronisierenden Instanzen (ohne Alarmsystem) passiert ist. Wenn nun diese Anderung z.B.
durch Netzwerkprobleme oder falsch konfigurierte Synchronisationseinstellungen erst nach einer
langeren Zeit auf die autoritative Instanz (mit aktiviertem Alarmsystem) ubertragen wird, wird
auch hier der Hinweis erst mit dieser Verspatung ausgelost.

Durch die Angabe von "Alte Alarme nur auslésen wenn nicht alter als" (siehe Abschnitt
#alarme_eigenschaften) konnen Sie festlegen, ob bzw. mit wie viel Verspatung solche Alarme
trotzdem noch ausgelost werden.

Neuinitialisierung der Objekt-Status fur BO-basierten
Terminen und Wiedervorlagen

Bestimmte Anderungen an bereits bestehenden BO-basierten Terminen oder Wiedervorlagen
konnen dazu fithren, dass die fir die interne Verarbeitung gespeicherten Informationen zur
Auslosung des Alarms fir die iberwachten Objekte neu initialisiert werden (mtissen).

Dies geschieht z.B. bei einem Wechseln der BOMaske ("Uberwache die Objekte ...") oder auch wenn
nur "innerhalb” der Maske die Entitaet-Eigenschaft gedndert wurde.

Bei solchen Anderungen werden die zum Alarm zugehorigen *AlarmStatus neu initialisiert,
genauso, als wenn der Alarm neu angelegt worden wére.

Folgende Anderungen fiihren zur Neuinitialisierung:
* Fur BO-basierter Termin: Jede Anderung an Attribut, Script, Maske sowie das Aktivieren von

NeuterminierungNachAusloesung.

« Fiir Wiedervorlagen: Jede Anderung an AusloeseKriterien, AchtetAufBOAendern,
AchtetAufBOErstellen, AchtetAufBOLoeschen, Script, AenderungVonBenutzer, AenderungVonGruppe,
AKsMitUndVerknuepfen, UeberwachungStartenAb, Inaktivitaetszeit und Maske sowie das Aktivieren
von NeuterminierungNachAusloesung.

106

#wiedervorlagestatus
#wiedervorlagestatus

CBOFormat

Diese relativ kleine Klasse hat mittlerweile einen derart hohen Stellenwert im Umgang mit MyTISM
erlangt, dass ich ihm hiermit ein eigenes Kapitel widme - ohne ein fundiertes Verstandnis der
Leistungen dieses Mechanismus macht man sonst viele Sachen um Magnituden komplizierter als
notig - ob es Felder im Report oder einfach "schone" Lesezeichen sind. Auflerdem kann das
CBOFormat im Export-Fall sehr niitzlich sein.

107

Was ist CBOFormat?

Ursprunglich wurde CBOFormat entwickelt, um Variablen in Texten auszutauschen und dabei
jeglichen "echten" Programmcode zu vermeiden. Dabei ging es um die Abbildung von Regeln wie
"Wenn der Vorname leer ist, darf das Komma nach dem Nachnamen nicht gedruckt werden",
"drucke die Emailadresse nur bis zum @ und den Rest in die nachste Zeile", oder "wenn das Feld
nicht leer ist, dann kommt da noch folgender Text hin".

Alles Geschichten, fir die man normalerweise ein Stuckchen Programmcode braucht, aber wer
schon einmal versucht hat, geschweifte Klammern und diverse andere Sonderzeichen vor dem Rest
des Textes zu maskieren - man denke einmal nur an nétige Zeilenumbriiche innerhalb eines etwas
komplizierteren Scripts, von Einriickungen ganz zu schweigen - wird ein Lied davon singen
konnen, wie lesbar dann der Programmtext noch ist, ganz zu schweigen von der leicht
"zerscripteten” Umgebung.

Es musste also eine Art Pseudocode her, der mit wenig Ballast diese Aufgaben bewerkstelligen kann
und trotzdem den Funktionsumfang maoglichst komplett abdeckt. Hier ist er:

Zunachst sei erwdhnt, dafd CBOFormat immer einen Satz Variablen und ein sogenanntes Root-
Objekt zur Auswertung tibergeben bekommt, und aufSerdem kompletten Zugriff auf das MyTISM-
Schema hat und somit alle Entitaten deren Attribute kennt.

Nun zum ersten Beispiel:

Ein Ansprechpartner mit Familienname und Rufname soll konsistent formatiert werden. Gehen wir
mal von einem Ansprechpartner-Objekt mit Familienname, Vorname, Titel, Geburtstag und
AnzahlKinder aus. Der Ansprechpartner soll in der Form "Familienname, Rufname, Titel" gedruckt
werden; falls aber der Rufname nicht angegeben ist, soll das Komma nicht mit angedruckt werden;
ebenso soll beim Titel verfahren werden. Das sieht so aus:

Familienname(', 'Rufname)(', 'Titel)

Die runde Klammer bewirkt, dass wenn ein Feld darin leer ist, der ganze Konstrukt verschwindet.
Mit ? ' ? Die ' um das Komma leiten statischen Text ein. Die Klammer bindet sozusagen einen
Auswertungsversuch zusammen - geht er schief, dann verschwindet er komplett.

Das ganze kann man auch etwas weiter ausbauen:
(Familienname):('Kein Familienname angegeben!')(', 'Rufname)(', 'Titel)

Wie man sieht, kann man hinter einer Klammer einfach einen Doppelpunkt und eine weitere
Klammer angeben, die dann benutzt wird, wenn die erste Klammer weg fallt. Das ist fast so wie die
if-then-Makros in Word zum Beispiel, nur dass man in unserem Fall so viele Klammern mit
Doppelpunkten verketten kann, wie man will (im Fall einer polymorphen Relation kann das sehr
nutzlich sein).

Man stelle sich jetzt vor, dafl man ein Korrespondenz-Objekt an die Hand bekommt und nun diesen

108

Ansprechpartner in einer CBOFormat-Klausel formatieren soll: (wir nehmen an, dafs der
Ansprechpartner im Korrespondenz-Objekt tiber das Attribut "Adressat" definiert ist)

(Adressat.Familienname):('-")(", 'Adressat.Rufname)(', 'Adressat.Titel)

Sieht umstandlich aus, weil das Adressat bei vermehrter Nutzung sehr oft angegeben werden muss.
Dafiir gibts einen einfacheren Weg: Vorklammern tber [:

Adressat[(Familienname):('-')(", 'Rufname)(', 'Titel)]

Ein besonderes Verhalten zeigt sich bei der Adressierung von Entitdten. Nehmen wir das Beispiel
von vorhin, und notieren einfach folgendes:

Adressat

Da nun das Ergebnis der Evaluierung ein BO ist, wird dessen Schema-Description zur Formatierung
herangezogen. Wenn also im Schema ein

... description="(Familienname):("'-")(", 'Rufname)(', 'Titel)"

steht, dann ist die Ausgabe identisch mit dem oberen Beispiel.

Den gleichen Effekt hat die Verwendung der Variable ", welche fiir die Root-Variable steht. Das ist
recht nutzlich, um eine bestimmte Information vor oder nach der schon vorhandenen (und
gegebenenfalls komplexen) Beschreibung hinzuzufiigen:

Adressat['['Id'] '.]

Obiges Beispiel gibt zum Beispiel den Adressaten wie im Beispiel davor aus, allerdings mit seiner Id
in eckigen Klammern.

109

Abweichendes Attribut aus der
Attributkette als Label verwenden

Bei der Anzeige von Attributwerten kann im Attributpfad das Trennzeichen - statt des normalen .
verwendet werden, um eine beschreibende Bezeichnung fiir den angezeigten Wert am Ende des
Attributpfad zu erhalten. Durch das Setzen eines Strichs als Trennzeichen (quasi eine "Markierung"
in der Attributkette) wird bewirkt, dass fiir das Label der Name des Attributs direkt vor dem Strich
verwendet wird, anstatt wie sonst Uiblich der Attributname am Ende des Pfades. Dies hat den
Vorteil, dass man sich eine separate Angabe des Labels tiber die Syntax $R spart und trotzdem eine
spezifische beschreibende Bezeichnung fiir den Attributwert erhalt.

Beispiele
MehrwertSteuer-Hoehe -> wirkt wie ein $R{MehrwertSteuer} als Label (statt $R{Hoehe})

Beleg.Adressat-Name1 -> wirkt wie ein $R{Adressat} als Label (statt $R{Namel})
Beleg-Adressat.Namel -> wirkt wie ein $R{Beleg} als Label (statt $R{Namel})

110

Datum und Zeitwert-Formatierung

Eine weitere interessante Moglichkeit ist das Formatieren von Datum und Zeitwerten. Das
geschieht einfach Uiber das Anhéngen einer geschweiften Klammer direkt an den Wert:

"Geburtstag{dd.MM.yyyy, HH:mm:ss 'Uhr'}"

Das wiirde den Geburtstag in der Form "24.04.1971, 15:35:00 Uhr" ausgeben.
Die verwendbaren Zeichen finden sich in der nachstehenden Tabelle:

Table 2. Die Bezeichner des SimpleDateFormat

Symbol Datums- oder Zeitkomponente Beispiel

G Zeitalter v.Chr, n.Chr

y Jahr 2004, 04

Y Wochenjahr 2004, 04

M Monat im Jahr Juli, Jul, 07

w Woche im Jahr 27

W Woche im Monat 2

D Tag im Jahr 189

d Tag im Monat 10

F Wochentag im Monat 2 (also der 2. Dienstag im
aktuellen Monat)

E Wochentag textuell Dienstag, Di

a AM/PM PM

H Stunde im Tag (0-23) 0

k Stunde im Tag (1-24) 24

K Stunde in AM/PM (0-11) 0

h Stunde in AM/PM (1-12) 12

m Minute in der Stunde 30

S Sekunde in der Minute 55

S Millisekunden 978

Z Zeitzone Generisch Pazifische Standardzeit; PST;
GMT-08:00

Z Zeitzone nach RFC822 -0800

' Textbegrenzer "‘Uhr'

111

Sollte in der Formatierung die Woche im Jahr benutzt werden (w), sollte fiir das

o Jahr das Wochenjahr benutzt werden (Y statt y). Sonst konnte es zu Verwirrungen
bei Daten am Anfang des Jahres kommen, da die ersten Tage oft noch in die letzte
Woche des Vorjahres fallen.

112

Zahlen-Formatierung

Zahlen lassen sich ebenso wie formatieren:

"Anzah1Kinder{#, ##0.000}"

wirde zum Beispiel die Anzahl Kinder auf 3 Stellen nach dem Komma, die Tausender dreistellig
gruppiert ausgeben.. :-)

Ein Zahlenformat beinhaltet optional ein negatives Format, abgetrennt durch ? ; ?, z.B.
i, #40.00+;#,\#4#0.00-.

Die Definition der Symbole in nachstehender Tabelle:

Table 3. Die Bezeichner des DateFormat

Symbol Ort Landesabhéngig Bedeutung

0 Nummer ja Ziffer

Nummer ja Ziffer, 0 wird nicht
gedruckt

Nummer ja Dezimaltrenner

- Nummer ja Minus-Symbol

, Nummer ja Gruppierungs-Symbol

E Nummer ja Mantissen/Exponent-
Separator.

; Formattrenner ja Trennt positives von

negativem Format.

% Pre/Suffix ja Multipliziere mit 100
und zeige als Prozent.

\u2030 Pre/Suffix ja Multipliziere mit 1000
und zeige als Promille.

113

\u00A4

114

Pre/Suffix

Pre/Suffix

ja

nein

Platzhalter fur das
Wéhrungssymbol, wird
ersetzt durch das
aktuelle
Wahrungssymbol.
Doppelt zeigt es das
internationale
Wahrungssymbol.
Wenn es innerhalb
eines Formates benutzt
wird, tauscht es den
Dezimaltrenner gegen
den
Wéhrungsdezimaltren
ner aus (ist in manchen
Landern tiblich).

Textbegrenzer fur
spezielle Zeichen.

Funktionsaufrufe

Ein weiteres, allerdings selten benutztes Feature ist die Verwendung von Funktionen im
CBOFormat. Das liegt nicht zuletzt daran, dafs durch die Verwendung eines reinen Forward-Parsers
eigentlich immer nur der aktuelle Wert zur Verfiigung steht und somit nur reine String-
Modifikationen moglich sind. Nichts desto trotz seien sie hier kurz vorgestellt. Eingeleitet werden
die Funktionen mit | (Pipe), die Parametertiibergabe erfolgt in Klammern. Die Klammern nach dem
Funktionsnamen sind obligatorisch. Meist werden die Funktionen erst dann wirklich nttzlich,
wenn man sie zusammen mit der runden Klammer einsetzt.

equals(s)

Vergleicht den gerade aktiven String mit dem angegebenen String. Fallt der Vergleich positiv aus,
bleibt der aktive String unverdandert, wenn nicht, wird der aktive String geleert.

notEqual(s)

Vergleicht den gerade aktiven String mit dem angegebenen String. Fallt der Vergleich negativ
aus, bleibt der String unverdndert, wenn nicht, wird der aktive String geleert.

(Ansprechpartner.Familienname |notEqual('bla')):('blablabla’)

Das Beispiel gibt im Falle eines Familiennamens "bla" statt dessen ein
"blablabla" aus

reverse()

Dreht den aktuellen String rickwarts.

cutLeftFrom(s)
Schneidet den aktuellen String an der Kante des Uibergebenen Strings links ab.

Ansprechpartner.Emailadresse|cutLeftFrom('@")

Ergibt im Falle von "foo@bar.com" ein "foo".

cutRightFrom(s)
Schneidet den aktuellen String an der Kante des tibergebenen Strings rechts ab.

Ansprechpartner.Emailadresse|cutRightFrom('@")

Ergibt im Falle von "foo@bar.com" ein "bar.com".

115

ifTrue()

Falls der aktuelle String nicht leer ist, ist er es danach.

(Ansprechpartner.EmailAdresse|ifTrue()):("'ja")

Gibt fir den Fall, daB der Ansprechpartner eine Mailadresse hat, ein
"ja" zurick.

ifFalse()

Falls der aktuelle String leer ist, ist er danach nicht mehr leer.

(Ansprechpartner.EmailAdresse|ifFalse()):('nein")

Gibt fir den Fall, daB der Ansprechpartner keine Mailadresse hat, ein
"nein" zurick.

stripLF()
Diese Operation entfernt alle Zeilenschaltungen aus dem aktuellen String.

left(count)

Gibt die ersten count Zeichen vom aktuellen String zurtck.

right(count)

Gibt die letzten count Zeichen vom aktuellen String zurtick.

strip()
Entfernt alle Leerzeichen um den aktuellen String herum.

116

Script-Verwendung

Nun gibt es immer noch Situationen, da geht’s ohne Script einfach nicht. Dafiir kann man auch ein
Beanshell-Script in doppelter geschweiften Klammern angeben und dann den passenden String

zusammenbasteln.

Um an die erforderlichen Daten heranzukommen wird die Root-Referenz als "bo" und alle im
Variablenhash definierten Variablen unter ihrem dort hinterlegten Namen eingeblendet.

'vorgestern war'{{new
SimpleDateFormat("EEE").format(Calendar.getInstance().rol1(Calendar.DAY_OF_YEAR, -

2).getTime())}}

Dabei kommt die Eigenschaft der Beanshell, das letzte Ergebnis als Ruckgabewert zu liefern zu
Hilfe, sonst wére bei dem Beispiel noch ein return ...; notwendig gewesen.

117

Wo kann man das CBOFormat nun
uberhaupt einsetzen?

Das CBOFormat findet seine Anwendung zundchst einmal in der Schema-Definition, und zwar in
Form des "description” Attributs. Es soll helfen, die Entitdten mit einer Art textueller Beschreibung
auszustatten (Programmierern als toString() Methode bekannt). Ich wollte aber aus verschiedenen
Grunden nicht die toString() Methode tiberladen, weil eine fiir das Debugging wichtige Information,
der hashCode, mit angegeben wird, der aber fiir den Benutzer voéllig nichtssagend ist; zudem sind
mehrere solcher descriptions denkbar (wenn auch (noch) nicht implementiert) oder konnen auch
ad hoc angefordert werden.

Dafiir hat jede vom System generierte Entitdt eine describe-Methode, die einen optionalen
Stringparameter bekommt und auf diesem Weg einen String der gewiinschten Form ausgibt. Das
kann vom Reportgenerator uiber direkte Objektreferenzen direkt benutzt werden (zum Beispiel
$F{THIS}.describe()), oder innerhalb einer BO-Methode fiir Debugging Ausgaben, Export-Formate...

In Solstice begegnet man dem CBOFormat stindig. Uberall, wo ein "displayFormat" angegeben
werden kann, ist das CBOFormat am Werk; in Lesezeichen die Spaltendefinition, in Formularen fiir
Labels, TablePopups, in den Fenstertiteln etc.

118

MEX - Makros und erweiterte
Query-Funktionen

Der bisher im MyTISM verwendete OQL-Parser unterstiitzt nicht alle gewtinschten Funktionen. Zu
den fehlenden Funktionen gehoren unter anderem Subqueries, Subclass-Casting, explizite Joins,
Unions und Fetch-Strategien. Wir konnen nicht alle Probleme auf einmal 16sen, doch fiir Union und
die damit ersetzbaren Subclass-Castings gibt es eine Losung: MEX.

Diese Losung ist kein kurzfristiger Workaround, sondern eine nachhaltige Erweiterung. Sie hilft,
Roundtrips in Queries zu reduzieren und komplexe Abfragen in der GUI handhabbar zu machen.
MEX ist ein Praprozessor, der bereits vorhandene API-Funktionen fir den Benutzer zuginglich
macht.

119

Definition von MEX

Die Auswertung der MEX-Konstrukte erfolgt an verschiedenen Stellen im Kernel, abhéingig davon,
welche Komponente zustdndig ist. MEX ist eine Sprache, die hauptsdchlich aus verschachtelten
Blocken mit geschweiften Klammern besteht. Ein bestehender Text wird mit MEX-Tags versehen
und auf der Serverseite schrittweise ausgewertet. Jede Verarbeitungsstufe entfernt dabei
bestimmte Klammerbldcke.

Falls nach der Auswertung noch nicht behandelte Klammerblocke tubrig bleiben, wird eine
Fehlermeldung ausgegeben. Diese nennt den unausgewerteten Block, sodass der Fehler leicht
identifiziert werden kann.

Der Kernbestandteil von MEX ist der MEXTransformer, der drei Konstrukte unterstiitzt:

Sichtbare Variablendefinition

Eine Variable wird definiert, und ihre Definition wird an dieser Stelle durch den Wert ersetzt.
{hausnr=4711}

Ergebnis:
4711

Die Variable hausnr erhalt den Wert 4711.

Unsichtbare Variablendefinition

Eine Variable wird definiert, aber die Definition wird aus dem Quelltext entfernt.
{!hausnr=4711}

Die Definition verschwindet vollstandig, aber die Variable hausnr hat dennoch den Wert 4711.

Variablenexpansion

Eine Variable wird durch ihren gespeicherten Wert ersetzt.
{=hausnr}

Ergebnis:

120

4711

(Vorausgesetzt, die Variable wurde zuvor mit diesem Wert definiert.)

Es ist wichtig zu wissen, dass Variablendefinition und -auswertung in verschiedenen Stufen
erfolgen. Eine Variable hat immer den zuletzt zugewiesenen Wert an allen Stellen, an denen sie
verwendet wird.

Beispiel:

{a=1}{=a}+{=a}={a=2}{=a}

Ergebnis:

2+2=2

Dadurch kann es passieren, dass Werte verwendet werden, bevor die zugehorigen Variablen
definiert wurden. Innerhalb der GUI konnen Variablen nicht gezielt frither oder spéter definiert
werden. Sie werden einmal festgelegt und behalten ihren Wert wahrend der gesamten Auswertung.

Diese drei Konstrukte sind die einzigen, die MEX direkt unterstiitzt. Weitere Funktionen werden
durch andere "Schichten" bereitgestellt. Mehr dazu im nachsten Kapitel.

121

Unterstiitzung auf der Query-Seite

MEX wird derzeit im Backend ausschliefdlich fiir Queries genutzt. Der CastorPersistenceHandler, der
Queries an den ORM Castor ubermittelt, unterstiitzt folgende Syntax:

SELECT a FROM de.ipcon.db.core.Formular a WHERE a.BOTyp.Name="Beleg"
{UnionAll SELECT a FROM de.ipcon.db.core.Schablone a WHERE a.BOTyp.Name="Beleg"}

Hierbei ist zu beachten, dass BOTyp eine Eigenschaft ist, die nicht von der Oberklasse Struktur
geerbt wird. Daher kann sie nicht direkt tiber Struktur abgefragt werden.

Dieses Beispiel gibt in einem einzigen Roundtrip zum Backend alle relevanten Ergebnisse zurtck.
Die Konstruktion kann beliebig oft wiederholt werden, je nach Anwendungsfall. Auch Projektionen
und weitere Abfrage-Techniken sind moglich:

SELECT a.Benutzer FROM de.ipcon.db.core.Gruppe a WHERE NOT Ldel
AND a.Formulare.BOTyp.Name="Beleg"
{UnionA1l SELECT a FROM de.ipcon.db.core.Benutzer a WHERE NOT Ldel
AND a.Gruppen.Name="Admins"}

o Momentan sind Union und UnionAll identisch, da die Dublettenerkennung im
QueryIterator noch nicht implementiert ist.

122

Unterstiitzung in Solstice

Die Solstice-Oberflache nutzt MEX, indem CBOTextQuery (liber <Query type="Text"/>) bereits Teile der
Query als Variablen deklariert. Zum Beispiel:

SELECT a FROM de.ipcon.db.core.Benutzer WHERE NOT Ldel
wird umgewandelt in:

{!select=SELECT a FROM}

{!where=a WHERE?}

{!constraints=NOT Ldel}

{=select} de.ipcon.db.core.Benutzer {=where} {=constraints}

Diese Variante ist funktional identisch zur ursprunglichen Query.

Ein interessanter Mechanismus besteht darin, dass die letzte Zeile der Query mit dem Tag
<template> ersetzt werden kann:

<Query type="Text">
<template>
{=select} de.ipcon.db.core.Benutzer {=where} {=constraints} AND Name LIKE "A%"
</template>
</Query>

Alle Filter, Volltextsuchen und andere OQL-Schnipsel werden in der Variablen constraints
gesammelt. Dadurch kann der Union-Mechanismus verwendet werden, um Constraints in alle
Union-Teile zu tibernehmen:

<template>
{=select} de.venice.bo.Rechnung {=where} {=constraints} AND (NOT Bezahlt
OR Bezahlt = NULL)
{UnionAll {=select} de.venice.bo.EingangsRechnung {=where} {=constraints} AND
FreigabeFiBu}
</template>

Gruppierung von Filtern

Unterschiedliche Attribute konnen in Subklassen variieren oder gar nicht existieren. Trotzdem
sollen sie Uiber die grafischen Filter auswahlbar sein.

Dazu konnen Filter gruppiert werden. Ein Filter erhdlt eine Gruppenkennung, z. B. group="R". Die
zugehorigen Query-Constraints werden dann in einer separaten Variablen gespeichert
(constraintsR).

123

Beispiel:

<Query type="Text">
<template>
{=select} de.venice.bo.Rechnung {=where} {=constraints} AND
{=constraintsAR} AND (not Bezahlt OR Bezahlt = NULL)
{UnionAll {=select} de.venice.bo.EingangsRechnung {=where} {=constraints} AND
{=constraintsER} AND FreigabeFiBu}
</template>
<filter type="bool" group="AR" title="Ausgangs-Rechnung hat Skonto">
<ifTrue>Skonto != NULL</ifTrue>
</filter>
<filter type="string" group="AR" title="Kunden-Nr">
<clause>Kunde.DebitorenNr like "%{}%"</clause>
</filter>
<filter type="string" group="ER" title="Lieferanten-Nr">
<clause>Lieferant.KreditorenNr like "%{}%"</clause>
</filter>
</Query>

124

Zukunftige Erweiterungen

Geplante Features umfassen:

* Verwendung von Skalaren und Listen als Parameter fiir Subqueries

* Fetch-Strategien zur Optimierung des Lazy-Loading in der GUI (z. B. Prefetching von Relationen)
= Volltextsuche

Die Volltextsuche erlaubt die einfache und schnelle Suche nach gegebenen Suchbegriffen tiber alle
in der MyTISM-Datenbank gespeicherten Objekte.

125

Vorbereitung und Konfiguration

Volltextsuche aktivieren

Die Volltextsuche ist normalerweise deaktiviert, d.h. Sie konnen in Abfragen keine auf der
Volltextsuche basierenden Klauseln verwenden. Abfragen mit solchen Klauseln fithren bei nicht
aktiver Volltextsuche zu einer Fehlermeldung.

Um die Volltextsuche zu aktivieren miussen Sie in der Datei mytism.ini im Abschnitt "Fulltextsearch"
das Flag "activateFts" setzen (sollte auch der entsprechende Abschnitt noch nicht existieren, fligen
Sie ihn einfach ebenfalls ein):

[Fulltextsearch]
activateFts=1

Einstellungen

Fur alle Einstellungen existieren Standardwerte; im Normalfall ist also keine weitere Konfiguration
fir die Volltextsuche notwendig und meist auch nicht sinnvoll. Lediglich der Parameter
max_locks_per_transaction der PostgreSQL-Instanz sollte angepasst werden, da aufgrund der
besonderen Gegebenheiten der Volltextsuche die Standardeinstellung dafiir nicht ausreichend zu
sein scheint.

PostgreSQL: max_locks_per_transaction

Bei der (initialen) Indexierung fiir die Volltextsuche werden u.U. viele gleichzeitige und relativ
langlaufende Anfragen an die PostgreSQL-Datenbank gestellt. Aus diesem Grund kann es notig sein,
den Parameter max_locks_per_transaction in der Datei /etc/postgresql/8.4/main/postgresql.conf
(der Pfad kann je nach benutzter Version und Konfiguration ggf. abweichen) zu erhohen.

Im Normalfall sollte es keine Probleme machen, diesen Wert einfach auf z.B. 1024 zu setzen, was
auch fiir die Indexierung vollkommen ausreichend sein sollte. Nachdem der Wert in obiger
Konfigurationsdatei gedndert wurde, muss die PostgreSQL-Instanz durchgestartet werden.

Betriebssystem: Mogliche Anzahl gleichzeitig offener Dateien

Je nach Betriebssystem und Konfiguration kann es sein, dass der Wert fiir die moégliche Anzahl
gleichzeitig offener Dateien erhoht werden muss. Ein Symptom dafiir sind entsprechende
Fehlermeldungen wéahrend des Betriebs der Applikation. Da der zu setzende Wert je nach System
und Konfiguration verschieden sein kann, konnen wir hierzu allerdings keine allgemeingultigen
Anweisungen oder Standardwerte geben.

indexAllByDefault

Im Gegensatz zu fritheren Versionen der Volltextsuche werden jetzt standardmafiig keine Entitaten
in den Index aufgenommen; nur Entititen, die im Schema explizit mittels <fulltext

126

indexed="yes"/> markiert wurden, werden flr die Volltextsuche indexiert.

Um diesen Standard zu &andern, so dass erst einmal alle (abgesehen von einer Handvoll
systeminterner) Entitdten in den Index aufgenommen werden, konnen Sie folgende Einstellung
verwenden:

Standardmadfsig (fast) alle Entitditen indexieren:

[Fulltextsearch]
activateFts=1
indexAl1ByDefault=1

indexDeletedBOs

Standardmafig werden auch als geloscht markierte Objekte fiir die Volltextsuche indexiert. Wenn
Sie dies nicht mochten oder bendtigen konnen Sie die Indexierung von geldschten Objekten wie
folgt deaktivieren:

Geloschte Objekte nicht indexieren:

[Fulltextsearch]
activateFts=1
indexDeletedB0s=0

spellcheck

Wenn Sie die Spellcheck/"Meinten sie vielleicht..."-Funktionalitdt zum Vorschlagen von alternativen
Suchwortern nutzen wollen, mussen Sie diese explizit aktivieren:

Spellcheck/"Meinten sie vielleicht..."-Funktionalitdt aktivieren:

[Fulltextsearch]
activateFts=1
spellcheck=1

o Um diese Funktionalitit nutzen zu konnen muss sich die JAR-Datei lucene-
spellchecker.jar im Classpath befinden.

fetchSize

Mit dieser Einstellung kann bestimmt werden, in welchen "Packen" Objekte bei der Indexierung
aus der Datenbank geladen werden. Abfragen, die sehr lange laufen, werden irgendwann
automatisch abgebrochen; mit diesem Parameter kann verhindert werden, dass Abfragen zu viel
Zeit in Anspruch nehmen, indem die Anzahl der pro Abfrage zu ladenden Objekte limitiert wird.

127

fetchSize auf 100.000 erhohen:

[Fulltextsearch]
activateFts=1
fetchSize=100000

Im Normalfall werden Sie diese Einstellung jedoch selten benétigen; der Standardwert 50.000 wird
normalerweise ok sein.

maxFieldLength und unlimitedFieldLength

Wenn indexierte Objekte Felder mit sehr grofSen/langen (Text)werten enthalten, werden von diesen
standardmafig nur die ersten 10.000 Zeichen indexiert. In gewissen Fallen kann dies nicht
ausreichend sein, oder alternativ zu viel und unnotig sein, so dass sie diese Grenze verandern
konnen.

Die ersten 50.000 Zeichen von Feldinhalten indexieren:

[Fulltextsearch]
activateFts=1
maxFieldLength=50000

Um (praktisch) beliebig lange Feldinhalte zu indexieren, konnen sie die Einstellung
unlimitedFieldLength aktivieren:

Gesamten Feldinhalt von (praktisch) beliebiger Liinge indexieren:

[Fulltextsearch]
activateFts=1
unlimitedFieldlLength=1

indexPath

Es hat sich herausgestellt, dass auf manchen Systemen ein Eintrag
indexPath=niofs:///<DURCH KORREKTES PROJEKTVERZEICHNIS ERSETZEN>/1index

o notwendig ist, um einen Fehler ("Setting type of FS directory is a JVM level setting,
you can not set different values within the same JVM") beim Serverstart zu
vermeiden.

Diese Einstellung fir die Volltextsuche betrifft das Verzeichnis, in dem die Dateien des Index

gespeichert werden. Uber "indexPath=ein/pfad/im/dateisystem" konnen sie bestimmen, wo diese
Dateien abgelegt werden.

128

#volltextsuche.index

Ein Beispiel, unter Linux:

[Fulltextsearch]
activateFts=1
indexPath=/var/1ib/mytism/ftsindex

Ein Beispiel, unter Windows:

[Fulltextsearch]
activateFts=1
indexPath=C:\Daten\MyTISM\FTS-Index

Im Normalfall werden Sie diese Einstellung jedoch selten bendétigen; wenn kein Eintrag fir
"indexPath" vorhanden ist, wird der Standardpfad benutzt. In diesem Fall werden die Index-
Dateien unterhalb eines Verzeichnisses namens index im Projekt-Verzeichnis der MyTISM-
Installation abgelegt, also z.B. unter /.1is/index.

Interessant in diesem Zusammenhang konnte evtl. sein, dass Uber diesen Parameter auch noch
Einstellungen fir den Dateisystemzugriff gemacht werden konnen, die sich evtl. auf die
Performance auswirken konnen. Siehe hierzu auch 4.1. File System Store.

Java 1.4 NIO zum Zugriff benutzen:

[Fulltextsearch]
activateFts=1
indexPath=niofs:///.is/index

maxThreads

Um die Leistung des Servers optimal zu nutzen, werden bei der Indexierung parallel mehrere
Abfragen abgesetzt, um die in den Suchindex aufzunehmenden Objekte zu laden.

Je nach Leistungsfahigkeit des Servers konnen mehr oder weniger Abfragen gleichzeitig bearbeitet
werden. Ausserdem wird die Anzahl der gleichzeitig moglichen Abfragen durch die erlaubte
Anzahl von Verbindungen zur Datenbank, etc. begrenzt. Mit dieser Einstellung kann die maximale
Anzahl der gleichzeitig fiir die Indexierung laufenden Threads begrenzt werden.

Eine geringe Angabe flr maxThreads fihrt lediglich dazu, dass die ggf. vorhandenen Ressourcen des
Systems nicht optimal genutzt werden und die Indexierung langer dauern kann, als eigentlich
erforderlich. Eine zu hohe Angabe kann dagegen dazu fiihren, dass die Indexierung aufgrund zu
grosser Anforderungen an das System fehlschldgt, was normalerweise zur Folge hat, dass die
Indexierung wieder komplett neu gestartet werden muss.

Der Standardwert fiir maxThreads ist die Anzahl der initial fiir die Java Virtual Machine verfiigharen
Prozessoren und sollte im Normalfall ok sein. Wenn Sie wichtige Griinde dafiir haben, konnen Sie
diesen Wert verringern oder erhohen. Wenn Sie hier "-1' angeben, sind beliebig viele parallel
laufende Threads erlaubt; konkret heisst das, dass fir jede im Schema definierte (und fir die
Indexierung vorgesehene) Entity ein eigener Thread gestartet wird.

129

http://www.compass-project.org/docs/2.2.0/reference/html/core-connection.html#core-connection-file

Wenn Sie sehr viele gleichzeitige Abfragen benutzen wollen missen Sie ggf. auch

o den Wert fur max_connections in der PostgreSQL-Konfiguration (s.0.) erhéhen - und
zwar mindestens auf den Wert, den Sie fiir maxThreads angegeben haben - da es
sonst wahrend der Indexierung zu Fehlern kommen kann.

maxThreads auf 15 setzen:

[Fulltextsearch]
activateFts=1
maxThreads=15

directoryWrapper

Uber diese Einstellung kann der Zugriff auf den Index iiber einen Wrapper gekapselt werden, was
ggf. Verbesserungen bei der Performance bringen kann. Siehe hierzu auch 4.6. Lucene Directory
Wrapper.

[Fulltextsearch]
activateFts=1
directoryWrapper=org.compass.core.lucene.engine.store.wrapper.AsyncMemoryMirrorDirecto

ryWrapperProvider

compassConfig

Mittels dieser Einstellung konnen Sie den Pfad zu einer Konfigurationsdatei angeben, mit der Sie
praktisch beliebige Einstellungen direkt zum verwendeten Compass-Suchframework durchreichen
konnen.

Weitere Infos dazu siehe Compass-Dokumentation.

130

http://www.compass-project.org/docs/2.2.0/reference/html/core-connection.html#core-connection-directoryWrapper
http://www.compass-project.org/docs/2.2.0/reference/html/core-connection.html#core-connection-directoryWrapper
http://www.compass-project.org/docs/2.2.0/reference/html/index.html

Der Index

Grundlage der Volltextsuche ist der sogenannte Index; grob gesagt handelt es sich dabei um eine
Struktur, die die Daten der in der MyTISM-Datenbank gespeicherten Objekte in einer Form enthalt,
welche eine einfaches Auffinden nach zu eingegebenen Suchbegriffen passenden Objekten
ermoglicht.

Initiale Erstellung

Dieser Index wird normalerweise einmal erstellt und im Weiteren dann automatisch aktualisiert,
wenn Anderungen an den Objekten in der Datenbank vorgenommen werden. Ist die Volltextsuche
aktiviert und noch kein Index vorhanden, wird beim Starten der MyTISM-Instanz automatisch ein
Index erzeugt. Die Volltextsuche ist erst verfliighar, wenn der Index fertig komplett wurde.

Fiur die Erstellung mussen alle Objekte, die mittels der Volltextsuche gefunden werden konnen
sollen, geladen und ihre Daten in den Index eingespeichert werden. Je nach Grisse der MyTISM-
Datenbank und der Anzahl der dort gespeicherten Objekte sowie der Leistungsfahigkeit der Server-
Machine, auf der die MyTISM-Instanz lauft, kann dieser Vorgang von einigen Minuten bis hin zu
vielen Stunden (oder noch ldnger) in Anspruch nehmen.

Wahrend dieser Zeit sind der Server und die MyTISM-Instanz aufgrund der vielen und
umfangreichen Abfragen normalerweise stark ausgelastet, was ggf. nattrlich Beeintrachtigungen
fir die normale Benutzung mit sich bringen kann.

Ausserdem sollte darauf geachtet werden, dass die Erstellung des Index nicht unterbrochen wird
(z.B. durch Herunterfahren der MyTISM-Instanz oder des gesamten Servers), da es wahrscheinlich
ist, dass sich bei einer Unterbrechung der Index in einem halbfertigen, nicht benutzbaren Zustand
befindet und daher die Indexerstellung spater noch einmal komplett neu angestossen werden
muss.

Wie bereits oben erwdhnt muss die Indexerstellung jedoch im Normalfall nur ein einziges Mal
gemacht werden, so dass es sich hierbei um eine einmalige Einschrankung handelt.

Erneute Erstellung / Re-Indexierung

Soll der Index aus irgendeinem Grund vollstindig neu erstellt werden, gibt es zwei Moglichkeiten,
dass zu erreichen:

1. Anlegen einer Datei namens ".force-fts-index-rebuild" im MyTISM-Projektverzeichnis. Dies ist
die normale, bevorzugte Methode. Der Inhalt der Datei ist unwichtig, sie kann leer sein.
Die Datei wird nach der Indexerstellung automatisch geldscht.

2. Handiges Loschen des Index-Verzeichnisses inkl. aller darin enthaltenen Unterverzeichnisse
und Dateien. Diese Methode muss ggf. angewandt werden, wenn die Indexerstellung
unterbrochen wurde (s.0.).

In beiden Fillen wird der Index von Grund auf neu erstellt, wie im vorherigen Abschnitt
beschrieben, mit allen dort erwdhnten Einschrdnkungen fiir die Benutzung der Anwendung

131

wahrenddessen.

Verteilen des Index fur synchronisierende Server

Da der Index keinerlei Instanz-spezifische Informationen enthdlt, kann ein einmal erstellter Index
auch fur eventuell vorhandenen, synchronisierende Server verwendet werden. Dies ist natirlich
insb. bei grossen Datenbanken sinnvoll, damit die aufwadndige Indexerstellung nicht mehrmals
erfolgen muss.

Das Verteilen des Index ist z.Zt. jedoch noch nicht automatisch moglich und daher muss der Index
hiandig auf die entsprechende Server-Machine kopiert werden. Dies geschieht einfach durch
Kopieren des gesamten Index-Verzeichnisses, inklusive aller darin enthaltenen Unterverzeichnisse
und Dateien, in das MyTISM-Projektverzeichniss (bzw. das in der Konfiguration angegeben
Verzeichnis) auf dem synchronisierenden Server.

Die MyTISM-Instanz, deren Index kopiert werden soll, sollte entweder ganz
gestoppt oder die Volltextsuche sollte nicht aktiviert sein. Ist dies nicht der Fall,

° kann es sein, dass der Index gerade aktualisiert wird, was ggf. dazu fihrt, dass er
nach dem Kopieren nicht benutzbar ist. Auch auf dem Zielserver sollte die
Volltextsuche nicht aktiv sein, wenn die Index-Dateien dorthin kopiert werden; die
MyTISM-Instanz an sich kann aber laufen.

Um nach dem Kopieren der Index-Dateien die Volltextsuche auf dem Zielserver zur Verfugung zu
stellen, muss diese in der Konfiguration aktiviert werden und die MyTISM-Instanz auf dem
Zielserver danach neu gestartet werden.

Konfiguration fur die in den Index aufzunehmenden
Daten

Im Normalfall werden alle textuellen Daten aller Objekte in der MyTISM-Datenbank fiir die
Volltextsuche aufbereitet und im Index eingespeichert. Als Entwickler einer MyTISM-Anwendung
konnen Sie die Indexierung allerdings weitergehend konfigurieren und z.B. bestimmen, dass
bestimmte Objekte oder bestimmte Daten von Objekten nicht indexiert werden sollen.

Da diese Moglichkeit jedoch nur beim Bauen einer MyTISM-Anwendung besteht und im fertigen
Produkt nicht mehr weiter konfigurierbar ist finden sich ausfiihrliche Informationen hierzu in der
MyTISM-Entwicklerdokumentation.

132

#volltextsuche.einstellungen
#volltextsuche.einstellungen
#volltextsuche.aktivierung

Benutzung der Volltextsuche

Wenn die Volltextsuche in der MyTISM-Konfiguration aktiviert und der Index vollstandig erstellt
wurde, kann die entsprechende Funktionalitdt genutzt werden.

Standard-Abfragen

Volltextsuche-Kriterien konnen in Abfragen (Queries) als MEX-Ausdricke eingefiigt werden. Die
entsprechende Syntax lautet: Fulltext [from <Entitdtsname>] matches <Volltext-Suchklausel(n)>

Beispiel: Eingabe von [\{Fulltext matches Schmitt} in der Suchzeile eines Kunden-Lesezeichen
findet alle Kunden(-Objekte) die in irgendeinem ihrer (indexierten) Attribute die Zeichenkette
"Schmitt" enthalten.

Normalerweise wird iber alle Attribute der Objekte gesucht; es konnen aber auch nur bestimmte
Attribute in die Suche einbezogen werden.

Beispiel: Eingabe von [\{Fulltext matches Name:Schmitt} in der Suchzeile eines Kunden-
Lesezeichen findet alle Kunden(-Objekte) die in ihrem Attribut "Name" die Zeichenkette
"Schmitt" enthalten.

Die Namen der Attribute entsprechen dabei genau den Namen, die im MyTISM-Schema angegeben
sind; Gross- und Kleinschreibung sind dabei zu beachten.

Weitere Angaben zur Abfrage-Syntax finden sich auch noch in der Compass-Dokumentation.

Einschrankungen der Entitat

FIXME Im Normalfall keine Angabe nétig, Default ist Entitdt der Abfrage.

133

#mex
http://www.compass-project.org/docs/2.2.0/reference/html/core-workingwithobjects.html#Query%20String%20Syntax

Grooql (Groovy Object Query
Language)

Eine alternative Moglichkeit, Objektmengen abzufragen. Hat Ahnlichkeiten/Uberschneidungen mit
OQL und BOMasken. Besteht aus Filterskripten, in einer eingeschrankten Groovy-Version
geschrieben.

Im Moment fast nur direkt aus Programmcode heraus zu benutzen, noch nicht unterstiitzt z.B. in
Lesezeichen (ist aber geplant). AufSerdem via GrooqlBOMaske.

Paket de.ipcon.db.grooql, "Hauptklasse" GrooglFilter; Javadoc dort:

{@code GrooqlFilter} allow to query {@code BOs} that match given
criteria from the DB and also check if given {@code BOs} match these
criteria, both accomplished using only one single criteria definition.
<p>

{@code GrooqlFilter} could thus be seen as a combination of OQL queries
and {@code BOMasken}.

<p>

The criteria definition is given as a script in a subset of the Groovy
language. The script is used directly to check if given {@code BOs}
match these criteria using the {@code fits()} method. For querying
matching {@code BOs} from the DB the script is automatically transformed
into an 0QL query which retrieves a superset of the matching
{@code BOs} which are then post-filtered with the script.

<p>

A1l attributes of the {@code BO} that is currently checked are available
as variables in the script with their simple name; for example if a filter
was defined for the class {@code Benutzer} {@code Name},

{@code Beschreibung}, {@code AnmeldungVerweigern} etc. would be
available as variables in the script under the exact above names.

L R R R R N R R R I R R

134

https://groovy-lang.org/

Sprachumfang

Unterstiitzt werden z.Zt.:

 Logische Verkniipfungen: && (und), | | (oder), ! (nicht)
» Operatoren fiir Skalare: ==, I=,<,>, | >=

* Methoden fir Zeichenketten: .startsWith(foo), .endsWith(foo), .contains(foo),
matchesSimple('bla*"), .lower(), .upper(), .trim()

Arithmetik/Zahlen: +, -, *, /, % (Modulo)
* Methoden fiir Datums- und Zeitwerte:
o Vergleich: .after(someDate), .before(someDate)

o Extrahieren von Datums-“Teilen”: .day, .month, .year bzw. alternativ .getDay(), .getMonth(),
.getYear()

o Genauigkeit/Granularitdt vergrobern: .thatDay() (setzt h/min/sec auf 0), .thatMonth() (setzt
d/h/min/sec auf 0), .thatWeek() (setzt h/min/sec auf 0 und Tag auf Anfangstag (Montag) der
entsprechenden Woche), .thatMonth() (setzt d auf 1, h/min/sec auf 0), .thatYear() (setzt M/d
auf 1, h/min/sec auf 0)

o Zukunft: .addDay(1), .addMonth(-1), .addYear(3)
o Vergangenheit: .subDay(2), .subMonth(-3), .subYear(1)

* BOs:
o Zugriff auf Attributketten.
o Id in einer gegebenen Liste: .idInList(<id-Liste>)

* Methoden fur Maps (Long - Objekte, insb. MyTISM-BO-Relationen-Attribute):

.containsId(<id>), .containsAl1Ids(<ids>)
Kommentare - sowohl mit // als auch /* */ - werden ebenfalls untersttitzt.

NICHT unterstiitzt werden (nur Beispiele, Liste ist keineswegs vollstandig):

* Aufrufe von Methoden, aufier den oben genannten

print/println oder Logausgaben
* instanceof <Interface> (Wiirde mittlerweile prinzipiell gehen, musste aber nachgebaut werden)

* import

135

Beispiele fur Filterskripte

Vorraussetzung: GrooqlFilter, der Objekte von Entitat (GrooqlFilter.Entity) "Dokument" sucht; diese
hat Attribute "Name" (String), "ErstellungsDatum" (Date), "Summel" (Integer), "Summe2" (Integer).
Beispiele fiir GrooqlFilter.FilterSource:

Alle Dokumente mit bestimmtem Namen:

Name = "Bilanz 1"

Alle Dokumente mit Namen der mit "Bilanz" beginnt:

Name.startsWith("Bilanz 1")

Alle Dokumente aus dem Jahr 2011:

ErstellungsDatum.year = 2011
oder
ErstellungsDatum.getYear() = 2011

Alle Dokumente neuer als 2011:

ErstellungsDatum.year > 2011
oder
ErstellungsDatum.getYear() > 2011

Alle Bilanzen von 2011:

Name.startsWith("Bilanz") && ErstellungsDatum.getYear() = 2011

Alle Dokumente ohne Namen:

Name == null || Name.trim() = ""

Alle Dokumente mit Summel + Summe2 > 1000:

Summe1 + Summe2 > 1000

136

Einstellungen-Variablen

Einstellungen-Variablen dienen dazu, Werte fiir bestimmte Einstellungen zu setzen, welche dann
z.B. in Skripten abgefragt und benutzt werden konnen. Diese Werte konnen global giltig oder
gruppen- oder benutzerabhéngig sein.

é Gednderte oder neue Einstellungen-Variablen werden erst nach einer erneuten
Anmeldung an der GUI wirksam.

137

Definition der vorhandenen/verfiigharen
Variablen

Normalerweise werden Einstellungen-Variablen vom Administrator oder von Entwicklern, je nach
dem Bedarf der spezifischen MyTISM-Anwendung, definiert. Eine Variable(ndefinition) hat
folgende Eigenschaften:

Name
Pflichtfeld - Der Name oder Titel einer Variable sollte diese kurz und pragnant benennen. Der
Name kann frei gewdhlt werden; ein wirkliches einheitliches Schema fiir die Benamsung
existiert (bisher) noch nicht.

Beschreibung

Optional - Die Beschreibung kann einen ldngeren Kommentar bzw. eine ldngere Beschreibung
der Variable beinhalten und ggf. erklaren wo bzw. wofir sie benutzt wird.

Standardwert

Optional - Dies ist der Wert, den die Variable normalerweise hat und der bei der Abfrage z.B. in
Skripten zurtickgeliefert wird, wenn kein spezieller Wert fiir bestimmte Benutzer oder Gruppen
gesetzt wurde (s.u.). Variablenwerte hier sind immer Zeichenketten, eine weiter Typisierung
(z.B. fiir Nummern oder Wahrheitswerte) gibt es nicht. Wenn kein Wert gesetzt wird, ist der
Standardwert einfach null.

Ueberschreibbar

Optional - Wenn dieses Flag gesetzt ist, konnen fiir einzelne Benutzer oder Gruppen vom
Standardwert abweichende Werte fiir diese Variable definiert werden (oder genauer gesagt:
Wenn solche Werte definiert wurden, werden sie auch bertcksichtigt; s.u.). Wenn das Flag nicht
gesetzt ist, gilt fir alle Benutzer oder Gruppen immer nur der Standardwert der Variable.

138

Abfrage von Einstellungen-Variablen in
Skripten

Variablenwerte konnen wie folgt abgefragt werden (Beispiel aus dem vorgebauten JahrMonatTag-
Filter-Codebaustein):

def val = ctx.getSession().getUser().getEVWert("jahrMonatTagFilter.Monat")

Hat man die Objektinstanz des gewtinschten Benutzers in der Hand (hier ist dies der aktuelle, mit
Hilfe des ClientContext ermittelte Benutzer), kann man mittels der Methode getEVWert() den Wert
einer beliebigen existierenden Einstellungsvariablen abfragen, indem deren Name der Methode
ubergeben wird.

139

Setzen von abweichenden Werten fur
Benutzer oder Gruppen

Wenn fiir bestimmte Benutzer oder Gruppen vom Standardwert abweichende, spezielle Werte fiir
eine Variable gesetzt werden sollen, geschieht das durch Anlegen von EinstellungenVarWertBenutzer
- oder EinstellungenVarWertGruppe-Objekten.

In diesen Objekten gibt man an, fiir welche Variable der Wert "uberschrieben" werden soll, fir
welchen Benutzer oder Gruppe der abweichende Wert gelten soll und natuirlich den Wert selbst.

Die Auswertung bzw. Bestimmung welcher Wert fiir einen spezifischen Benutzer letztendlich
zuruckgeliefert wird erfolgt so:

1.
2.

140

Wenn eine Variable mit dem gewtlinschten Namen nicht existiert, wird null zurtickgegeben.

Wenn die Variable existiert und Ueberschreibbar NBSP nicht gesetzt ist, wird immer der
Standardwert der Variable zurtickgegeben.

Wenn Ueberschreibbar gesetzt ist und eine EinstellungenVarWertBenutzer-Instanz fir den
Benutzer und die Variable existiert, wird der dort angegebene Wert zurtickgegeben.

Wenn Ueberschreibbar gesetzt ist, keine passende EinstellungenVarWertBenutzer-Instanz
existiert, aber eine EinstellungenVarWertGruppe-Instanz fiir die Variable und eine Gruppe, in der
der Benutzer Mitglied ist, existiert, wird der dort angegebene Wert zuriickgegeben. Wenn
mehrere passende Instanzen fiir die Variable und unterschiedliche Gruppen, in denen der
Benutzer Mitglied ist, existieren, so wird der Wert zuriickgegeben, der fiir die Gruppe mit der
Kleinsten Id definiert wurde.

Lesezeichen und Anzeige in Benutzer- und
Gruppen-Formularen

Im Ordner der Gruppe "Benutzer" gibt es ein vorgebautes Lesezeichen, in dem alle fir den
angemeldeten Benutzer geltende EinstellungenVarWerte (sowohl fiir Benutzer als auch Gruppe)
angezeigt werden; allerdings nur solche, fiir deren zugehorige Variable das Flag Ueberschreibbar
gesetzt ist!

In den vorgebauten Formularen fiir Benutzer und Gruppe gibt es ebenfalls einen Reiter Variablen; in
der dortigen Tabelle werden alle fiir den jeweiligen Benutzer bzw. die jeweilige Gruppe definierten
EinstellungenVarWertBenutzer bzw. EinstellungenVarWertGruppe angezeigt.

141

Scripted Attributes

Bei den Scripted Attributes handelt es sich um Virtual Properties, die zur Laufzeit (KEIN Server-
Restart oder Client-Neuanmeldung notig!) an ein BO hinzugefligt werden konnen - sei es in einem
Lesezeichen, einem Formular oder im Report. Als Programmiersprache der Scripted Attributes
kommt Groovy zum Einsatz, welches nahezu 100% kompatibel zu Java ist.

Der Tag heisst virtualProperty und kennt folgende Parameter:

Table 4. virtualProperty-Parameter

Param Beschreibung Defaul Pflichtfeld
eter t
entity Name der Entitat, an die das virtuelle Attribut - ja

"angebaut" werden soll
name Wie das zu bauende virtuelle Attribut heissen soll - ja

type Von welchem Datentyp das virtuelle Attribut ist; "String ja, sofern abweichend
mogliche Typen: String, Integer, Long, Decimal, Date vom Default
sowie MyTISM-Objekte in Kombination mit einer
relation-Angabe (z.B. BO, Artikel, Rechnung, ...)

relatio Handelt es sich um eine Relation des Typs n-1oder 1-n - ja, sofern es sich beim
n Typ um ein MyTISM-
Objekt handelt

readon Ist das virtuelle Attribut beschreibbar? Wird eine setter- "false" siehe Beschreibung
ly Methode explizit definiert impliziert dies ein
readonly="true"

cached Bestimmt die Cachingstrategie des Ergebnisses. Siehe Deakti nein
Abschnitt "cached" viert

default Ein Groovy-Ausdruck, der den Standardwert definiert; - nein
nur sinnvoll fir non-readonly vattrs; siehe Abschnitt
"default”

Auflerdem kann man ein Unterelement namens init mit einem Groovy-Skript verwenden, das
beim erstmaligen Zugriff (get, set, add, remove) auf diese Virtual Property einer Objektinstanz
ausgefiihrt wird; siehe Abschnitt "init"

142

http://www.groovy-lang.org/documentation.html#gettingstarted

Beispiele fur Virtual Properties

Virtual Property in einem Lesezeichen:

<Table entity="Rechnung">
<virtualProperty entity="Rechnung" name="PostenAnzahl">
<get>bo.Posten.size()</get>
</virtualProperty>
<Query type="Text"/>
<View>
<Column property="BelegNr" sort="DESC" sortlLevel="2"/>
<Column property="Wartend"/>
<Column property="Adressat.AbstraktePerson" title="Kunde"/>
<Column property="Belegdatum"/>
<Column property="GesamtSumme"/>
<Column property="Waehrung"/>
<Column property="PostenAnzahl"/>
</View>
</Table>

Virtual Properties in einem Formular:

143

<View>
<virtualProperty entity="BX" name="Scanzeile">
<set>
if (value == null) {
return
}
command = value.substring(@, 1)
param = value.substring(1)
switch (command.toUpperCase()) {
case 'M":
println "M-Nr'
bo.LogInfo = "Kommando $command"
// hier ggfs. Code zur Verarbeitung der M-Nr
break
case 'S':
println 'S-Nr'
bo.LogInfo = "Kommando $command"
// hier ggfs. Code zur Verarbeitung der S-Nr
break
default:
bo.LogInfo = "Error: unbekanntes Kommando \"$command\""
}
</set>
</virtualProperty>
<virtualProperty entity="BX" name="LogInfo" readonly="false"/>
<!-- Formular-Definition -->
<Element>
<Text property="ScanZeile" align="CENTER" fontStyle="bold">
<Action cmd="beep" accKey="ENTER" shortDescription="keep focus after enter key
here">
<onAction>ftx.sync()</onAction>
</Action>
</Text>
</Element>
<Element label="LogInfo">
<Text property="LogInfo"/>
</Element>
</View>

Quellcode 2:

<element>
<einElement>inhalt</einElement>
<nochEinElement/>
<!-- War: <element attribut="zwei"/> -->
<Include name="codebaustein" attrWert="zwei"/>
<wiederumEinElement attr="wert"/>

</element>

144

Nicht alle Bereiche eines Strukturelements konnen auf Virtual Properties
zugreifen. Beispielsweise ist dies innerhalb einer <enabledOn> - Bedingung einer
Action nicht moglich. FIXME Complete and/or correct the list of sections where
virtual properties can/cannot be accessed.

145

Caching

Manche "virtualProperties" sind so aufwandig zu berechnen, dass es sich lohnt das Ergebnis zu
cachen. Ein einfaches Caching tber transientProperties (FIXME Erklarung?) existiert in vielen
Projekten, ist uiblicherweise aber nicht synchronisiert. Dadurch werden teure Berechnungen und
Queries parallel mehrfach ausgefiihrt, was sowohl hohen Netzwerktraffic als auch Serverlast
verursachen kann. Der dazu notige Boilerplate-Code verringert zudem die Wartbarkeit.

Daher gibt es eine Standardmaoglichkeit, Werte solcher Properties zur mehrfachen Verwendung zu
speichern. Diese wird bei der Definition mit dem XML-Attribut cached aktiviert.

Mogliche Cachemodi

false oder NONE

Der Wert wird nicht im Cache gespeichert, der Getter wird bei jedem Aufruf erneut berechnet.
Entspricht dem Default-Verhalten, falls das cached Attribute weggelassen wurde.

true oder VERSIONED

Der zurtuickgegebene Wert ist nur fiir die aktuelle BO-Version giiltig. Wird das BO verdndert,
dann wird der Getter erneut aufgerufen und ein aktualisierter Wert berechnet. Fir alle
Strukturelemente empfehlenswert.

SIMPLE

Der zuruickgebene Wert ist dauerhaft giltig und wird (praktisch gesehen) tiber die Lebensdauer
des BOs nicht neu berechnet. Er wird erst verworfen, wenn der komplette Cache des "scripted
Attribute" geleert wird, was z.B. durch Leeren des CachingBOLoader-Caches geschieht.

Dieser Modus sollte nur verwendet werden, wenn der berechnete Wert garantiert unabhangig
vom aktuellen Zustand des BOs ist.

Neuberechnung bei true oder VERSIONED

Der Cache fiir VERSIONED-Attribute wird invalidiert, wenn am BO ein bumpVersion() aufgerufen wird.
Anderungen an anderen, z.B. vom BO referenzierten, BOs sind da egal.

Das passiert in den folgenden Féllen automatisch:

* Ein persistentes Attribut am BO wird gedndert
* FIXME add/remove vermutlich auch, aber ist nicht ganz sicher

* Ein "scriptedAttribut® am BO wird gedndert. Das triggert zum einen den
TransactionMessageQueue und macht auch ein bumpVersion(), selbst wenn eigentlich nichts am BO
selbst gedndert wird.

* BO#bumpVersion = invalidiere VERSIONED-Caches

* BO#notifyMessageBus = invalidiere VERSIONED-Caches und stelle sicher das sich Tabellen etc.
aktualisieren

146

cached-Angabe direkt im Schema
Es ist auch moglich, direkt bei der Definition eines Attributes im Schema cached anzugeben.

Die Schema-Variante speichert den Cache als "transientProperty" am BO und macht ein
Synchronize beim Lesen und Schreiben. Die "scriptedAttribute” Variante (s.0.) speichert das am
ScriptedAttribute intern, benutzt Futures und ist insgesamt Multi-Threading-performanter.

Bei beschreibbaren Schema-vattrs muss man das Event in der MessageQueue selbst erzeugen.
Dafuir aktualisieren sich dann Tabellen auch korrekt.

Positiv-Beispiel
@ Beispiel:

<virtualProperty entity="B0" name="TeureSumme" type="Long" cached="true"> @
<get>return bo.BOLoader.queryBO("sum(Id) from BO a where not Ldel").find()</get> @
</virtualProperty>
<virtualProperty entity="B0" name="TeurerSummeNull" type="Boolean"> ®
<get>return bo.TeureSumme == null</get>
</virtualProperty>

@ cached="true" aktiviert das automatische Caching im Modus 'VERSIONED".

@ Sollte noch kein BO in der Datenbank existieren, dann ist die Summe 0 und find() gibt null
zuruck. Der Getter enthélt nur die reine Berechnung des Wertes.

® Eine einfach zu berechnende Property hingt vom Ergebnis der teuren Berechnung ab. Diese
muss nicht unbedingt als cached markiert sein.

Negativ-Beispiel

Die Semantik des cached-Flags SIMPLE entspricht in etwa der folgenden Implementierung, mit
einigen wichtigen Vorteilen:

1. Die Synchronisation kann viel enger gefasst werden, wodurch verschiedene virtualProperties
des gleichen BOs parallel berechnet werden konnen.

2. null-Werte werden korrekt im Cache gespeichert.

3. Standardmassige Versionierung, d.h. der Wert wird nach Benutzereingaben automatisch
aktualisiert.

@ Don’t do this, just for reference!

147

<virtualProperty entity="B0" name="TeureSumme" type="Long">
<get><![CDATA[
def cacheValue = bo. TeureSumme @
if (cacheValue <> null) {
return cacheValue

}
synchronized (bo) {
cacheValue = bo._TeureSumme @
if (cacheValue <> null) {
return cacheValue

}
cacheValue = bo.BOLoader.queryBO("sum(Id) from BO a where not Ldel").find() ®
bo. TeureSumme = cacheValue @

}

return cacheValue
11></qget>
</virtualProperty>

@ Prife auf existierenden Cache, entspricht einem synchronisiertem Zugriff auf die Transient
Property Map des BOs.

@ Erneuter Check noétig, evtl. wurde dieser Thread am synchronized aufgehalten wéhrend ein
anderer das Ergebnis bereits berechnet hat.

® Die eigentliche Berechnung...

@ bzw. bo.setTransientProperty('_TeureSumme', cacheValue, true) fiir Versionierung.

148

Standard-Werte

Schreibbare Scripted Attributes konnen einen Standardwert zugewiesen bekommen. Der
Standardwert wird uber einen Groovy-Ausdruck im Attribut default des virtualProperty-Elements
angegeben.

<virtualProperty entity="B0" name="Name" readonly="false" default="'Grumpy Cat'"/> @®

<virtualProperty entity="B0"
name="AnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything" type="Long"
readonly="false" default="42"/> @

<virtualProperty entity="B0" name="Einheit" readonly="false" type="Einheit"
relation="n-1"
default="Einheit.forMeter(bo.BOLoader)"/> ®

® Der initiale Wert des ScriptedAttributes vom Typ String wird auf den Wert "Grumpy Cat"
gesetzt.

@ Der initiale Wert des ScriptedAttributes vom Typ Long wird auf den Wert 42 gesetzt.

® Als initialer Wert fiir das ScriptedAttribute vom Typ Einheit wird das Initialdaten-Objekt, das
"Meter" repréasentiert, via BOLoader des BOs besorgt.

149

Initialisierungsskript

Scripted Attributes konnen ein init-Unterelement haben, das ein Groovy-Skript enthélt, welches
beim erstmaligen Zugriff (get, set, add, remove) auf diese Virtual Property einer Objektinstanz
ausgefihrt wird. Typischerweise kann ein solches Skript Datenstrukturen oder Caches
initialisieren. Das Skript kann theoretisch auch den Wert einer Virtual Property setzen und damit
ggfs. den Wert, der uber den Ausdruck im default-Attribut gesetzt wurde, wieder Uberschreiben;
dies wird jedoch als Warning im Client-Log vermerkt.

<virtualProperty entity="B0" name="Name" readonly="false">
<init>bo.Name = 'Happy Dog'</init> @
</virtualProperty>

<virtualProperty entity="B0"
name="AnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything" type="Long"
readonly="false">
<init> @
bo.initNutrimaticDrinksDispenser()
bo.resetInfiniteImprobabilityDrive()
bo.applyThinkingCap()
bo.assureTowel()
</init>
</virtualProperty>

® Der initiale Wert des ScriptedAttributes vom Typ String wird per init-Skript auf den Wert
"Happy Dog" gesetzt.

@ Essentielle Initialisierungsroutinen zur Berechnung des Werts des ScriptedAttributes vom Typ
Long werden durchgefiihrt. = Troubleshooting - Probleme und (hoffentlich) deren Losungen

FIXME: wie man Fehler meldet (Weg, Inhalt (was wir wissen muessen), ...

150

Probleme beim Start des Clients

de.ipcon.tools.IRuntimeException: Vergroesserung des Pools fehlgeschlagen, IOException
aufgetreten: Malformed reply from SOCKS server

Beim SOCKS Server handelt es sich um einen Proxy-Server. Stellen Sie sicher, dass im JavaWebstart
die Option "Direktverbindung" eingestellt ist anstelle einen Proxy-Server zu verwenden.
Desweiteren 6ffnen Sie "/Start/Einstellungen/Systemsteuerung/Internetoptionen” und wechseln dort
auf den Reiter "Verbindungen". Im unteren Drittel befinden sich die "LAN-Einstellungen". Dort
deaktivieren Sie bitte ALLE Checkboxen und schliessen den Dialog mit OK.

151

FAQ - Immer wiederkehrende
Fragen und deren Beantwortung

152

Benutzer-Passwort dndern / Change user
password / Changer mot de passe

Benutzer-Passwort andern

Nach der Anmeldung finden Sie im linken Menii-Baum ganz oben einen Eintrag mit IThrem Login-
Namen. Wenn Sie auf diesen Eintrag mit der rechten Maustaste klicken, 6ffnet sich ein Kontext-
Ment, aus dem Sie den Eintrag Information auswahlen. Es 6ffnet sich ein Formular, in dem Sie ein
neues Passwort setzen konnen.

Change user password

After the login you will find in menu tree (left side) at the top an entry with your login name. Right-
clicking on this entry will open a context menu where you can choose the entry Information. A form
will open where you can change your password.

Changer mot de passe

Apres la connexion vous trouvez dans la navigation (c6té gauche) en haut I’entrée de votre nom
d’utilisateur. Faites un clique droit sur votre nom d’utilisateur pour ouvrir un menu ou vous
choississez ’entrée Informations. Un formulaire vous permet de changer votre mot de passe.

153

JavaWebstart-Cache 16schen unter Windows

Geben Sie unter START / AUSFUHREN folgenden Befehl ein und driicken RETURN
javaws -viewer

Es offnet sich das “Java Control Panel” und evtl. sogar direkt schon “Java Cache Viewer”

Wenn sich der Cache Viewer nicht 6ffnet, dann klicken Sie im Control Panel bei “Tempordre
Internetdateien” auf “Anzeigen”

Markieren Sie im “Java Cache Viewer” die jeweilige Anwendung (einmal klicken) und l6schen Sie
diese dann durch Anklicken des grossen roten “X” in der Mentizeile des Cache Viewers.

Schliessen Sie den "Java Cache Viewer" und das "Java Control Panel" und versuchen Sie sich erneut
anzumelden, indem Sie die Anwendung erneut herunterladen.

154

Anzeige der Symbole auf SVGs umstellen

Um die Verwendung von Symbolen in Vektorgraphik zu aktivieren, erstellen Sie - falls noch nicht
vorhanden - eine Variable vom Typ Boolean mit dem Namen theme.useSVGIcons und erstellen Sie
anschlieflend eine EinstellungenVariable flir diese Variable mit dem Wert true. Anschliefsend
miussen Sie den Solstice-Client neu starten.

155

Der Windows-Task-Manager zeigt mehr
verwendeten Speicher an als der About-
Dialog von MyTISM

Wenn ein Java-Prozess gestartet wird, fordert die JVM die Speichermenge an, die in der Option
-Xmx in den an den Java-Prozess gelieferten VM args angegeben ist. Dieser Gesamtspeicher wird
von Windows fir die JVM "reserviert", aber bis er verwendet wird, wird er zundchst nicht
zugewiesen. Dies ist die "Memory (Private Working Set)"-Nutzung, die man im Task-Manager (unter
Details) sieht.

Die Diskrepanz kommt daher, dass unser Report im About-Dialog nur die Heap-Usage anzeigt, d.h.
die "Used"-Angabe stellt eine Anndherung an die Gesamtmenge an Speicher dar, die derzeit fir
Objekte verwendet wird, gemessen in Mebibytes. Das wird ausgerechnet aus der Differenz aus dem
"total" memory (= Die Gesamtmenge an Speicher, die derzeit fiir aktuelle und zukiinftige Objekte
verfugbar ist) und dem "free" memory (=eine Anndherung an die derzeit fir zukunftige
zugewiesene Objekte verflighare Gesamtmenge an Speicher).

Der Speicher der JVM teilt sich in der Regel auf diese Bereiche auf:

* Heap-Speicher, der fiir Java-Objekte vorgesehen ist (hier wiirde sich i.d.R. auch ein memory-
leak zeigen).

* Nicht-Heap-Speicher, d.h. der Ort, an dem Java geladene Klassen und Metadaten sowie den JVM-
Code speichert.

» Nativer Speicher, d.h. Speicher, der fir dll’s und nativen Java-Code (sehr niedrige Ebene)
reserviert ist.

o Der Windows Task-Manager zeigt dies nicht an. Er zeigt nur den gesamten von der
Anwendung verwendeten Speicher an (Heap + nicht-Heap + nativer Teil).

Normalerweise ist den Prozessen, die mehr Speicher vom Betriebssystem anforderten, der Speicher
auch dann noch zugewiesen, wenn die eigentliche Anwendung den Speicher schon wieder
"freigegegen" hat. Die entsprechenden Speicherseiten sind von Windows als Teil des Adressraums
des Prozesses abgebildet worden. Es obliegt Windows, die Working Set Size wieder
zuruckzufahren, nachdem Java den Speicher wieder freigegeben hat, was es allerdings nicht
unbedingt "sofort" tut. Im Task-Manager nimmt der Speicher also nicht unbedingt immer ab, aber
das deutet dann nicht zwingend auf ein Speicherleck in der Anwendung hin.

Allerdings konnte es helfen, die Applikation kurz zu minimieren, dann passt
(r) Windows die Working Set Size normalerweise nochmal an den tatsachlichen
et Bedarf an. (Quelle)

Fazit: die Speichernutzung, die der Task-Manager zeigt spiegelt nicht unbedingt das wider, was das
Programm aktuell verwendet. Mafsgeblich ist eher das, was im Dialog in MyTISM zu sehen ist an
(Heap-)Speicher. Das sollte irgendwann bzw. beim Schliefden aller Fenster und Loschen der Caches
abnehmen und wenn nicht, deutet das dann wirklich auf ein Speicherleck hin.

156

https://getgreenshot.org/2010/07/24/a-few-words-on-memory-usage-or-working-set-vs-private-working-set/

Der TaskManager ist allgemein - gelinde gesagt - nicht so toll. Wir empfehlen daher
die Verwendung des Process Explorers aus der Microsoft Sysinternals Suite, der
1.A. bessere Ergebnisse zeigt (wenn auch in diesem Fall nicht, da der Heap auch
dort nicht getrennt ausgewiesen wird). = MyTISM Kurzanleitung - Ein Datenbank-
und Anwendungs-Framework :Email: <support@oashi.com> :Date: 2025-07-09 :toc:
:icons: font

157

https://www.heise.de/download/product/process-explorer-21841
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
mailto:support@oashi.com

Willkommen bei MyTISM!

MyTISM ist ein leistungsstarkes Programm, das Ihnen hilft, Informationen zu verwalten und zu
bearbeiten. Stellen Sie es sich wie ein digitales Buiro vor, in dem alles ordentlich sortiert und immer
griffbereit ist.

Der Name ,MyTISM“ steht fir ,My Tool Is My...“. Was dieses Werkzeug ist, entscheiden Sie! Es
konnte Thre Losung, Thr Schliissel zum Erfolg oder Ihre Inspiration sein.

Warum MyTISM?

MyTISM wurde entwickelt, um Ihnen die Arbeit zu erleichtern. Es bietet eine klare, intuitive
Benutzeroberfliche und eine Vielzahl niitzlicher Funktionen zur effizienten Verwaltung Threr
Daten. Das System basiert auf einer 3-Tier-Architektur, die die Benutzeroberfliche, die
Anwendungslogik und die Datenspeicherung voneinander trennt. Dieses Design macht die
Anwendung stabil, flexibel und einfach zu warten.

Der Solstice-Client: Thr Arbeitsbereich

Wenn Sie MyTISM starten, sehen Sie als erstes den Solstice-Client. Dies ist Ihr Hauptfenster — die
Kommandozentrale, von der aus Sie alles steuern konnen.

Auf der linken Seite finden Sie den Navigationsbaum. Dies ist Thr wichtigstes Werkzeug, um sich
im System zurechtzufinden. Er organisiert alle verfiigharen Funktionen und Daten in Ordnern.

Die rechte Seite des Fensters ist der Hauptarbeitsbereich. Hier werden verschiedene Elemente wie
Datentabellen (Lesezeichen) und Detailansichten (Formulare) angezeigt. Oben bieten eine
Meniileiste und eine Symbolleiste Zugriff auf allgemeine Befehle und Aktionen.

Kernfunktionen fur Ihre tagliche Arbeit

MyTISM bietet mehrere Schliisselkomponenten fiir die Interaktion mit Ihren Daten. Die Elemente,
mit denen Sie arbeiten, wie Kunden, Projekte oder Rechnungen, werden als Geschéaftsobjekte (BOs)
bezeichnet.

[l Lesezeichen Lesezeichen sind Ihr wichtigstes Werkzeug zur Anzeige von Datenlisten. Stellen Sie
sie sich als leistungsstarke, gespeicherte Suchen vor, die Datensétze in einer Tabelle anzeigen. Von
einem Lesezeichen aus konnen Sie:

* Einen Eintrag per Doppelklick 6ffnen, um dessen detailliertes Formular anzuzeigen.

* Die Daten durch Klicken auf eine Spaltentuiberschrift sortieren.

* Ein zweiter Klick kehrt die Reihenfolge um.

Die Suchleiste und interaktive Filter verwenden, um bestimmte Eintrdge schnell zu finden.

* Die ausgewdahlten Daten zur Verwendung in anderen Programmen in eine CSV- oder XLS-Datei
exportieren.

158

Formulare Formulare dienen zur Anzeige und Bearbeitung der Details eines einzelnen
Datensatzes (eines BOs). Wenn Sie einen Eintrag aus einem Lesezeichen o6ffnen, erscheint er in
einem Formular. Hier konnen Sie alle Informationen einsehen, Anderungen vornehmen und diese
speichern.

(3 Schablonen Schablonen sind ,Blaupausen® fiir die Erstellung neuer Datenséitze. Wenn Sie einen
neuen Eintrag hinzufliigen miussen, wie ein neues Projekt oder ein Support-Ticket, verwenden Sie
eine Schablone. Dies stellt sicher, dass alle notwendigen Informationen konsistent erfasst werden.

= Reports (Berichte) Reports ermoglichen es Thnen, Ihre Daten in einem druckbaren Format
darzustellen. Dies ist niutzlich fiir die Erstellung von Etiketten oder offiziellen Dokumenten wie
Rechnungen, Projektzusammenfassungen oder Kundenlisten.

¢/> Codebausteine Dies sind kleine, wiederverwendbare Teile eines Formulars, die von
Entwicklern verwendet werden. Sie helfen dabei, komplexe Formulare effizient zu erstellen und
ein einheitliches Erscheinungsbild in der gesamten Anwendung zu gewéahrleisten.

Ein typischer Arbeitsablauf
MyTISM ist intuitiv gestaltet. Hier ist ein schrittweises Beispiel fur eine haufige Aufgabe:

1. Finden Sie Thre Daten: Verwenden Sie den Navigationshaum auf der linken Seite, um das
passende Lesezeichen zu finden. Sie konnten zum Beispiel zu Projekte Alle aktiven
Projekte navigieren.

2. Sehen Sie sich die Liste an: Doppelklicken Sie auf das Lesezeichen, um eine Tabelle mit allen
aktiven Projekten zu 6ffnen.

3. Finden Sie einen bestimmten Eintrag: Verwenden Sie die Suchleiste oder klicken Sie auf die
Spaltentiberschriften, um die Liste zu sortieren und das gewtnschte Projekt zu finden.

4, Offnen Sie die Details: Doppelklicken Sie auf die entsprechende Projektzeile. Dadurch wird das
Formular des Projekts geoffnet.

5. Anzeigen oder Bearbeiten: Im Formular konnen Sie alle Details einsehen. Wenn Sie die
erforderlichen Berechtigungen haben, konnen Sie die Informationen bearbeiten und auf die
Schaltflache ,,Speichern® klicken.

6. Erstellen Sie einen neuen Eintrag: Um ein neues Projekt zu erstellen, suchen Sie die
Schablone ,Neues Projekt“ im Navigationsbaum und doppelklicken Sie darauf. Ein leeres
Formular wird geoffnet, das Sie ausfiillen konnen.

Weitere nutzliche Funktionen
* Massendnderungen: Sie konnen mehrere Eintrage in einem Lesezeichen auswéahlen und alle
auf einmal dndern.

* Volltextsuche: Eine leistungsstarke Suchfunktion ist in Lesezeichen verfiighar. Sie ermdglicht
es Ihnen, Informationen tber alle Objekte des dort angezeigten Typs zu finden.

* Benachrichtigungen & Alarme: Das System kann Sie automatisch tiber wichtige Ereignisse
informieren oder Sie warnen, wenn ein Termin niher riickt.

159

Hilfe und Support

Wenn Sie Fragen haben oder Hilfe bendtigen, wenden Sie sich bitte an Thren Systemadministrator
oder den OAshi-Support.

Tipps fur den Einstieg

 Nehmen Sie sich etwas Zeit, um sich mit der Solstice-Oberfldche vertraut zu machen.
* Klicken Sie sich durch die Ments und probieren Sie die verschiedenen Funktionen aus.

* Beginnen Sie damit, Lesezeichen und Schablonen zu erkunden, um ein Geftihl fiir die
Arbeitsweise von MyTISM zu bekommen.

* Nutzen Sie das Kontextmeni (Rechtsklick) bei Eintrdgen im Navigationsbaum und in
Lesezeichen, um verfiighare Aktionen zu entdecken.

» Zogern Sie nicht, die verfiigharen Hilfe- und Support-Ressourcen zu nutzen.

Wir winschen Ihnen viel Erfolg mit MyTISM! = MyTISM Quick Guide - A Database and
Application Framework :Email: <support@oashi.com> :Date: 2025-07-09 :toc: :icons: font

160

mailto:support@oashi.com

Welcome to MyTISM!

MyTISM is a powerful program designed to help you manage and process information. Think of it
as your digital office, where everything is neatly organized and always within reach.

The name “MyTISM*“ stands for “My Tool Is My...“. What that tool is, is up to you! It could be your
Solution, your Key to success, or your Inspiration.

Why MyTISM?

MyTISM was developed to make your work easier. It provides a clear, intuitive interface and a host
of useful features to help you manage your data efficiently. The system is built on a 3-tier
architecture, which separates the user interface, application logic, and data storage. This design
makes the application stable, flexible, and easy to maintain.

The Solstice Client: Your Workspace

When you launch MyTISM, the first thing you’ll see is the Solstice client. This is your main
window—the command center from which you can control everything.

On the left side, you’ll find the Navigation Tree. This is your primary tool for finding your way
around the system. It organizes all available functions and data into folders.

The right side of the window is the main work area. This is where different elements like data
tables (Bookmarks) and detailed views (Forms) are displayed. At the top, a menu bar and toolbar
provide access to common commands and actions.

Core Features for Your Daily Work

MyTISM offers several key components to help you interact with your data. The items you work
with, like customers, projects, or invoices, are called Business Objects (BOs).

[l Bookmarks Bookmarks are your primary tool for viewing lists of data. Think of them as
powerful, saved searches that display data records in a table. From a bookmark, you can:

* Double-click an entry to open its detailed form.

Sort the data by clicking on a column header.

A second click reverses the order.
» Use the search bar and interactive filters to quickly find specific items.

» Export the selected data to a CSV or XLS file for use in other programs.

Forms Forms are used to display and edit the details of a single data record (a BO). When you
open an item from a bookmark, it appears in a form. Here, you can view all its information, make
changes, and save them.

[Templates Templates are “blueprints“ for creating new data records. When you need to add a

161

new item, like a new project or support ticket, you use a template. This ensures all necessary
information is captured consistently.

£ Reports Reports allow you to present your data in a printable format. This is useful for creating
labels or official documents like invoices, project summaries, or customer lists.

<[> Code Snippets These are small, reusable parts of a form that developers use. They help build
complex forms efficiently and ensure a consistent look and feel across the application.

A Typical Workflow

MyTISM is designed to be intuitive. Here is a step-by-step example of a common task:
1. Find your data: Use the Navigation Tree on the left to find the appropriate Bookmark. For
example, you might navigate to Projects A1l Active Projects.
2. View the list: Double-click the bookmark to open a table showing all active projects.

3. Find a specific item: Use the search bar or click on column headers to sort the list and find the
project you need.

4. Open the details: Double-click the specific project row. This will open the project’s Form.

5. View or Edit: In the form, you can view all the details. If you have the necessary permissions,
you can edit the information and click the save button.

6. Create a new item: To create a new project, find the “New Project“ Template in the Navigation
Tree and double-click it. A blank form will open, ready for you to fill in.

Other Useful Functions

* Bulk Changes: You can select multiple entries in a hookmark and change them all at once.

* Full-Text Search: A powerful search function is available in bookmarks. It lets you find
information across all objects of the type displayed there.

* Notifications & Alarms: The system can automatically notify you about important events or
alert you when a deadline is approaching.

Help and Support

If you have questions or need assistance, please contact your system administrator or OAshi
support.

Getting Started Tips

» Take some time to familiarize yourself with the Solstice interface.
¢ Click through the menus and try out the various functions.
« Start by exploring Bookmarks and Templates to get a feel for how MyTISM works.

» Use the right-click context menu on items in the Navigation Tree and in bookmarks to discover

162

available actions.

* Don’t hesitate to use the available help and support resources.

We wish you every success with MyTISM! = Guide Rapide MyTISM - Un Framework de Base de
Données et d’Application :Email: <support@oashi.com> :Date: 2025-07-09 :toc: :icons: font

163

mailto:support@oashi.com

Bienvenue dans MyTISM !

MyTISM est un programme puissant qui vous aide a gérer et a traiter des informations. Imaginez-le
comme un bureau numeérique ou tout est bien organisé et toujours a portée de main.

Le nom « MyTISM » signifie « My Tool Is My... » (Mon Outil Est Mon...). Quel est cet outil, c’est a vous
de décider ! Il pourrait étre votre Solution, votre Clé du succes ou votre Inspiration.

Pourquoi MyTISM ?

MyTISM a été développé pour vous faciliter le travail. Il offre une interface claire et intuitive ainsi
qu'une multitude de fonctionnalités utiles pour une gestion efficace de vos données. Le systéme est
basé sur une architecture a 3 niveaux, qui sépare I'interface utilisateur, la logique applicative et le
stockage des données. Cette conception rend ’application stable, flexible et facile a maintenir.

Le client Solstice : Votre espace de travail

Lorsque vous lancez MyTISM, la premiéere chose que vous voyez est le client Solstice. C’est votre
fenétre principale - le centre de commande a partir duquel vous pouvez tout controler.

Sur le coté gauche, vous trouverez ’arborescence de navigation. C’est votre principal outil pour
vous repérer dans le systeme. Elle organise toutes les fonctions et données disponibles dans des
dossiers.

Le coté droit de la fenétre est la zone de travail principale. C’est ici que différents éléments comme
les tableaux de données (Marque-pages) et les vues détaillées (Formulaires) sont affichés. En haut,
une barre de menus et une barre d’outils donnent acces aux commandes et actions courantes.

Fonctionnalités clés pour votre travail quotidien

MyTISM offre plusieurs composants clés pour interagir avec vos données. Les éléments avec
lesquels vous travaillez, tels que les clients, les projets ou les factures, sont appelés Objets Métier
(BOs).

[l Marque-pages Les marque-pages sont votre principal outil pour afficher des listes de données.
Imaginez-les comme des recherches puissantes et enregistrées qui affichent les enregistrements de
données dans un tableau. A partir d’un marque-page, vous pouvez :

* Double-cliquer sur une entrée pour afficher son formulaire détaillé.

 Trier les données en cliquant sur un en-téte de colonne.

e Un deuxieme clic inverse ’ordre.

Utiliser la barre de recherche et les filtres interactifs pour trouver rapidement des éléments
spécifiques.

» Exporter les données sélectionnées vers un fichier CSV ou XLS pour les utiliser dans d’autres
programmes.

164

Formulaires Les formulaires sont utilisés pour afficher et modifier les détails d’un seul
enregistrement (un BO). Lorsque vous ouvrez un élément a partir d’'un marque-page, il apparait
dans un formulaire. Ici, vous pouvez consulter toutes ses informations, apporter des modifications
et les enregistrer.

[Modeéles Les modéles sont des « plans » pour la création de nouveaux enregistrements. Lorsque
vous devez ajouter un nouvel élément, comme un nouveau projet ou un ticket de support, vous
utilisez un modele. Cela garantit que toutes les informations nécessaires sont saisies de maniére
cohérente.

& Rapports Les rapports vous permettent de présenter vos données dans un format imprimable.
Ceci est utile pour créer des étiquettes ou des documents officiels comme des factures, des résumés
de projet ou des listes de clients.

</> Blocs de code Ce sont de petites parties réutilisables d’un formulaire qui sont utilisées par les
développeurs. Ils aident a construire des formulaires complexes de maniere efficace et a garantir
une apparence cohérente dans toute I’application.

Un flux de travail typique
MyTISM est congu pour étre intuitif. Voici un exemple étape par étape d’une tache courante :

1. Trouvez vos données : Utilisez I’'arborescence de navigation a gauche pour trouver le
marque-page approprié. Vous pourriez par exemple naviguer vers Projets Tous les projets
actifs.

2. Consultez la liste : Double-cliquez sur le marque-page pour ouvrir un tableau affichant tous les
projets actifs.

3. Trouvez un élément spécifique : Utilisez la barre de recherche ou cliquez sur les en-tétes de
colonne pour trier la liste et trouver le projet souhaité.

4. Ouvrez les détails : Double-cliquez sur la ligne du projet correspondant. Cela ouvrira le
formulaire du projet.

5. Affichez ou modifiez : Dans le formulaire, vous pouvez voir tous les détails. Si vous disposez
des autorisations nécessaires, vous pouvez modifier les informations et cliquer sur le bouton «
Enregistrer ».

6. Créez une nouvelle entrée : Pour créer un nouveau projet, recherchez le modéle « Nouveau
projet » dans l’arborescence de navigation et double-cliquez dessus. Un formulaire vide
s’ouvrira, prét a étre rempli.

Autres fonctions utiles
* Modifications en masse : Vous pouvez sélectionner plusieurs entrées dans un marque-page et
les modifier toutes en méme temps.

* Recherche plein texte : Une fonction de recherche puissante est disponible dans les marque-
pages. Elle vous permet de trouver des informations sur tous les objets du type qui y est affiché.

* Notifications & Alarmes : Le systéeme peut vous informer automatiquement des événements

165

importants ou vous alerter a ’approche d’une échéance.

Aide et Support

Si vous avez des questions ou si vous avez besoin d’aide, veuillez contacter votre administrateur
systeme ou le support d’OAsh.

Conseils pour démarrer

* Prenez un peu de temps pour vous familiariser avec I'interface de Solstice.
* Parcourez les menus et essayez les différentes fonctions.

* Commencez par explorer les marque-pages et les modéles pour vous faire une idée du
fonctionnement de MyTISM.

Utilisez le menu contextuel (clic droit) sur les éléments de ’arborescence de navigation et dans
les marque-pages pour découvrir les actions disponibles.

* N’hésitez pas a utiliser les ressources d’aide et de support disponibles.

Nous vous souhaitons beaucoup de succés avec MyTISM ! = MyTISM Kuerz-Uleedung - En
Datebank- an Applikatiouns-Framework :Email: <support@oashi.com> :Date: 2025-07-09 :toc:
:icons: font

166

mailto:support@oashi.com

Weéllkomm bei MyTISM!

MyTISM ass e machtege Programm, deen Iech hélleft, Informatiounen ze verwalten an ze
veraarbechten. Stellt Iech et wéi en digitale Biiro vir, an deem alles iwwersiichtlech zortéiert an
émmer bei der Hand ass.

Den Numm ,MyTISM“ steet fir ,My Tool Is My...“ (Mdin Tool Ass Madin...). Wat dat Tool ass,
decidéiert Dir! Et kéint Ar Léisung, Are Schléssel zum Erfolleg oder Ar Inspiratioun sinn.

Firwat MyTISM?

MyTISM gouf entwéckelt, fir Iech d’Aarbecht méi einfach ze maachen. Et bitt eng kloer, intuitiv
Benotzeruewerflich an eng Villzuel vun nétzleche Funktiounen fir eng effizient Gestioun vun Aren
Donnéeén. De System baséiert op enger 3-Schichten-Architektur, déi d’Benotzeruewerflach,
d’Applikatiounslogik an d’Datespédicherung vunenee trennt. Dés Konceptioun mécht d’Applikatioun
stabil, flexibel an einfach ze entretenéieren.

De Solstice-Client: Aren Aarbechtsberiich

Wann Dir MyTISM start, ass dat éischt, wat Dir gesitt, de Solstice-Client. Dat ass Ar Haaptfénster —
d’Kommandozentral, vun dar aus Dir alles steiere kénnt.

Op der lénker Siit fannt Dir den Navigatiouns-Bam. Dat ass Aert Haaptinstrument, fir Iech am
System erémzefannen. E organiséiert all verfiighar Funktiounen an Donnéeén an Dossieren.

Déi riets Séit vun der Fénster ass den Haaptaarbechtsberdich. Hei ginn verschidden Elementer wéi
Donnéeéstabellen (Lieszeechen) an detailléiert Usiichten (Formulairé) ugewisen. Uewen
erméiglechen eng Menitsldischt an eng Toolbar den Zougréff op gangeg Befehler an Aktiounen.

Kiarfunktioune fir Ar alldeeglech Aarbecht

MyTISM bitt verschidde Schlésselkomponente fir mat Aren Donnéeén ze interagéieren.
D’Elementer, mat deenen Dir schafft, wéi Clienten, Projeten oder Rechnungen, ginn als
Geschaftsobjekter (BOs) bezeechent.

[l Lieszeechen Lieszeeche sinn Aert Haaptinstrument fir d’Uweise vun Donnéeéléschten. Stellt Iech
se wéi machteg, gespaichert Siche vir, déi Donnéeésiatz an enger Tabell uweisen. Vun engem
Lieszeechen aus kénnt Dir:

Duebelklicken op en Asaz, fir sdin detailléierte Formulaire unzeweisen.
* D’Donnéeén duerch Klick op eng Kolonn-Iwwerschréft zortéieren.

* En zweete Klick dréint d’Reiefolleg ém.

D’Sichldischt an interaktiv Filtere benotzen, fir spezifesch Elementer séier ze fannen.

* Déi ausgewielt Donnéeén an eng CSV- oder XLS-Datei exportéieren, fir se an anere Programmer
ze benotzen.

167

Formulairé Formulairé gi benotzt, fir d’Detailer vun engem eenzegen Donnéeésaz (e BO)
unzeweisen an z’dnneren. Wann Dir en Element aus engem Lieszeechen opmaacht, erschéngt et an
engem Formulaire. Hei kénnt Dir all seng Informatioune gesinn, Annerunge maachen a se
spaicheren.

(3 Schablounen Schabloune si ,Pling“ fir d’Erstelle vun neien Donnéeéséitz. Wann Dir en neit
Element baifiiige musst, wéi en neie Projet oder en Support-Ticket, benotzt Dir eng Schabloun. Dat
garantéiert, datt all néideg Informatioune kohérent erfaasst ginn.

& Rapporten Rapporte erméiglechen Iech, Ar Donnéeén an engem dréckbare Format
duerzestellen. Dat ass nétzlech fir Etiketten oder offiziell Dokumenter wéi Rechnungen, Projet-
Resumeeén oder Clienteléschten ze erstellen.

<[> Code-Bausteng Dat si kleng, erémverwendbar Deeler vun engem Formulaire, déi vun den
Entwéckler benotzt ginn. Si héllefen, komplex Formulairé effizient ze bauen an en eenheetlecht
Ausgesinn an der ganzer Applikatioun ze garantéieren.

En typeschen Aarbechtsoflaf

MyTISM ass intuitiv konzipéiert. Hei ass e Schrétt-fir-Schrétt-Beispill vun enger gangeger Aufgab:
1. Fannt Ar Donnéeén: Benotzt den Navigatiouns-Bam op der lénker Siit, fir dat passend
Lieszeechen ze fannen. Dir kéint zum Beispill op Projeten A1l aktiv Projeten navigéieren.

2. Kuckt d’Léscht un: Duebelklickt op d’Lieszeechen, fir eng Tabell mat all den aktive Projeten
opzemaachen.

3. Fannt e spezifescht Element: Benotzt d’Sichlaischt oder klickt op d’Kolonn-Iwwerschréften, fir
d’Léscht ze zortéieren an de gewénschte Projet ze fannen.

4. Maacht d’Detailer op: Duebelklickt op déi entspriechend Projet-Zell. Dat mécht de Formulaire
vum Projet op.

5. Uweisen oder Anneren: Am Formulaire kénnt Dir all Detailer gesinn. Wann Dir déi néideg
Berechtegungen hutt, kénnt Dir d’Informatiounen dnneren an op de Knippchen ,Spdicheren
Kklicken.

6. Erstellt en neien Asaz: Fir en neie Projet ze erstellen, sicht d’Schabloun ,Neie Projet“ am
Navigatiouns-Bam an duebelklickt drop. En eidele Formulaire mécht sech op, prett fir ausgeféllt
ze ginn.

Aner nétzlech Funktiounen
* Massendannerungen: Dir kénnt méi Asdtz an engem Lieszeechen auswielen a se all gldichzaiteg
anneren.

* Volltext-Sich: Eng méachteg Sichfunktioun ass an de Lieszeechen verfiighar. Si erméiglecht Iech,
Informatiounen iwwer all Objeten vum Typ ze fannen, deen do ugewisen gétt.

* Notifikatiounen & Alarmen: De System kann Iech automatesch iwwer wichteg Evenementer
informéieren oder Iech warnen, wann en Delai méi no kénnt.

168

Héllef an Support

Wann Dir Froen hutt oder Héllef braucht, kontaktéiert w.e.g. Are Systemadministrator oder den
OAshi-Support.

Tipps fir unzefanken

e Huelt Iech e béssen Ziit, fir Iech mat der Solstice-Uewerflach vertraut ze maachen.

* Klickt Iech duerch d’Mentien a probéiert déi verschidde Funktiounen aus.

Fankt domat un, d’Lieszeechen an d’Schablounen z’erfuerschen, fir e Gefill fir d’Aarbechtsweis
vu MyTISM ze Kkréien.

Benotzt de Kontextment (riets-klick) op Elementer am Navigatiouns-Bam an an de Lieszeechen,
fir verfiigbar Aktiounen z’entdecken.

Zéckt net, déi verfiighar Héllefs- a Support-Ressourcen ze notzen.

Mir wénschen Iech vill Erfolleg mat MyTISM!

169

	MyTISM - Ein Datenbank- und Anwendungs-Framework
	Inhaltsverzeichnis
	Einleitung
	MyTISM: Ein starkes Fundament für Ihre Anwendung

	Vorstellung von MyTISM
	Was bedeutet der Name "MyTISM"?
	Warum MyTISM?
	Was ist MyTISM genau?
	Was bringt die Zukunft?

	SOLSTICE - der Client
	Grundlagen
	Ansicht der Benutzeroberfläche
	Bereiche des Hauptfensters
	Mehrfachfenstermodus
	Navigationsbaum
	Aussehen und Position von Elementen
	Sichtbarkeit von Elementen

	Strukturelemente

	Arbeiten mit Strukturelementen
	Anzeige von Objekten (BOs)
	Export der Daten aus einem Lesezeichen
	Kopieren eines Objektes aus einem Lesezeichen
	Anordnen und Organisieren von Strukturelementen
	Erstellen und Bearbeiten von Strukturelementen

	Glossar
	Referenz Tastaturkürzel
	Sichern und Wiederherstellen von Strukturelementen
	Ausführung von Skripts bei Server-Ereignissen

	Lesezeichen
	Sortierung
	Sortierung nach einer Spalte
	Sortierung nach mehreren Spalten
	Vordefinierte Sortierung

	Suchmöglichkeiten
	Volltextsuche
	Interaktive Filter
	Definition von Filtern allgemein
	Texteingabefelder (type="string")
	Eingabefelder für Zahlen (type="decimal")
	Eingabefelder für Datumswerte (type="date")
	Checkboxen zur Ja/Nein/Egal-Auswahl
	Auswahlboxen zur Auswahl aus mehreren Optionen
	Statische Multiple-Choice-Filter
	Dynamische Multiple-Choice-Filter mit choiceQuery

	Dynamische Multiple-Choice-Filter mit choiceScript

	Trenner
	OQL-Klauseln
	Beispiele

	Volltextsuche auf zusätzliche Felder ausdehnen
	Fest eingestellte Filter
	Eigene Query-Schablone
	Bedingungsgruppen ("constraint groups")

	Massenänderungen / Skripting
	"Transform Scripts" für die Abfrageresultate
	Das Query-Element
	Abfrage von Entitäten die ein bestimmtes Interface implementieren
	Benutzung von GUI-Filtern bei Nutzung von withInterface
	Flag excludeOtherInterfaces für GUI-Filter

	Formulare
	Eingabemöglichkeiten nach Datentypen
	Timespan (Zeitspanne)
	Altes Standardformat
	"Doppelpunkt"-Format(e)
	"Marker"-Format(e)

	Diverses

	Pivot-Modus (Beta) in MyTISM verwenden
	Verfügbarkeit und Vorbereitung
	Pivot-Modus starten und beenden
	Datenanalyse in der Pivot-Ansicht
	Allgemeine Analyseschritte:

	Interpretation der Ergebnisse

	Schablonen
	Erzeugen des neuen Objektes

	Reports
	Grundlagen
	Was ist ein Report überhaupt?

	Erstellung eines neuen Reports
	(Eingabe-)Parameter für Reports
	Die Anker-Definition oder: Wie komme ich an die Daten?
	virtualProperties in Reports

	Das CBOFormat und seine Verwendung im Report
	Troubleshooting
	Seitenwechsel / Überlappende Felder / "wachsende" Felder bei dynamischem Text

	Codebausteine
	Einbinden von Codebausteinen
	Reiter "CookedParameter", "CookedReportDefinition" sowie "CookedAnkerDefinition" und "Codebausteine"

	Pfadangaben für Codebausteine
	Benamsung von Codebausteinen
	Inhalt von Codebausteinen
	hideComment beim Einbinden eines Codebausteines

	Argumente für Codebausteine
	Core-Codebausteine
	jahrMonatTag.filter

	Problembehebung
	IllegalArgumentException: Invalid parameter "xyz" given…​

	Benachrichtigungen
	Alarme
	Grundlagen
	Vorbereitung und Konfiguration
	Alarmsystem-Lizenz einspielen
	Alarmsystem aktivieren
	Sync-Events behandeln
	Benachrichtigungssystem aktivieren

	Anlegen und Verwalten von Alarmen
	Gruppe "Admins Alarmsystem"
	Alarme aktivieren und deaktivieren
	Testmodus für Alarme

	Gemeinsame Eigenschaften aller Alarme
	Erster Reiter
	Reiter "Erweitert"

	Einfacher Termin
	Allgemeine Eigenschaften festlegen
	Wann soll der einfache Termin stattfinden?
	Vorwarnzeit

	Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?

	BO-basierter Termin
	Allgemeine Eigenschaften festlegen
	Welche Objekte sollen "überwacht" werden?
	Exkurs: Vor- und Nachteile der verschiedenen BOMasken-Typen
	Skript
	Grooql-BOMasken
	OQL-BOMasken

	Wann soll der BO-basierte Termin (für ein Objekt) ausgelöst werden?
	Auslösedatum aus Objekt-Attribut auslesen
	Auslösedatum mit Skript berechnen

	Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
	Automatische Neuterminierung nach Auslösung
	Anhängen von (weiteren) Objekten
	BOBasierterTermin-Status

	Hinweise
	Allgemeine Eigenschaften festlegen
	Welche Objekte sollen "überwacht" werden?
	Wann soll der Hinweis ausgelöst werden?
	Ignorierte BTs/Änderungen
	Auslösung bei beliebiger Änderung, Erstellen oder Löschen von Objekten (Unter-Reiter "Einfach")
	Auslösung mittels Auslösekriterien (Unter-Reiter "Erweitert")
	Auslösung mittels Auslöseskript (Unter-Reiter "Skript")
	Mindestens eines oder alle gleichzeitig?
	Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
	Von wem muss die Änderung stammen?
	Ab wann ist der Hinweis aktiv?

	Wiedervorlagen
	Allgemeine Eigenschaften festlegen
	Welche Objekte sollen "überwacht" werden?
	Wann soll die Wiedervorlage ausgelöst werden?
	Wer soll Benachrichtigungen erhalten und wie sollen diese aussehen?
	Wiedervorlage-Status

	Benachrichtigung bei Alarm-Auslösung
	Hartkodierte trigger()-Methode
	Benachrichtigungsskript "Sende Benachrichtigungen mittels dieses Skripts", Reiter "Erweitert"
	Standard-Mechanismus

	Logging/Historie und AlarmAusloesungen-Objekte
	Sonstige Infos
	"Verpasste" bzw. "Verspätete" Auslösung
	Neuinitialisierung der Objekt-Status für BO-basierten Terminen und Wiedervorlagen

	CBOFormat
	Was ist CBOFormat?
	Abweichendes Attribut aus der Attributkette als Label verwenden
	Datum und Zeitwert-Formatierung
	Zahlen-Formatierung
	Funktionsaufrufe
	Script-Verwendung
	Wo kann man das CBOFormat nun überhaupt einsetzen?

	MEX - Makros und erweiterte Query-Funktionen
	Definition von MEX
	Sichtbare Variablendefinition
	Unsichtbare Variablendefinition
	Variablenexpansion

	Unterstützung auf der Query-Seite
	Unterstützung in Solstice
	Gruppierung von Filtern

	Zukünftige Erweiterungen
	Vorbereitung und Konfiguration
	Volltextsuche aktivieren
	Einstellungen
	PostgreSQL: max_locks_per_transaction
	Betriebssystem: Mögliche Anzahl gleichzeitig offener Dateien
	indexAllByDefault
	indexDeletedBOs
	spellcheck
	fetchSize
	maxFieldLength und unlimitedFieldLength
	indexPath
	maxThreads
	directoryWrapper
	compassConfig

	Der Index
	Initiale Erstellung
	Erneute Erstellung / Re-Indexierung
	Verteilen des Index für synchronisierende Server
	Konfiguration für die in den Index aufzunehmenden Daten

	Benutzung der Volltextsuche
	Standard-Abfragen
	Einschränkungen der Entität

	Grooql (Groovy Object Query Language)
	Sprachumfang
	Beispiele für Filterskripte

	Einstellungen-Variablen
	Definition der vorhandenen/verfügbaren Variablen
	Abfrage von Einstellungen-Variablen in Skripten
	Setzen von abweichenden Werten für Benutzer oder Gruppen
	Lesezeichen und Anzeige in Benutzer- und Gruppen-Formularen

	Scripted Attributes
	Beispiele für Virtual Properties
	Caching
	Mögliche Cachemodi
	Neuberechnung bei true oder VERSIONED

	cached-Angabe direkt im Schema
	Positiv-Beispiel
	Negativ-Beispiel

	Standard-Werte
	Initialisierungsskript
	Probleme beim Start des Clients

	FAQ - Immer wiederkehrende Fragen und deren Beantwortung
	Benutzer-Passwort ändern / Change user password / Changer mot de passe
	Benutzer-Passwort ändern
	Change user password
	Changer mot de passe

	JavaWebstart-Cache löschen unter Windows
	Anzeige der Symbole auf SVGs umstellen
	Der Windows-Task-Manager zeigt mehr verwendeten Speicher an als der About-Dialog von MyTISM
	Willkommen bei MyTISM!
	Warum MyTISM?
	Der Solstice-Client: Ihr Arbeitsbereich
	Kernfunktionen für Ihre tägliche Arbeit
	Ein typischer Arbeitsablauf
	Weitere nützliche Funktionen
	Hilfe und Support
	Tipps für den Einstieg

	Welcome to MyTISM!
	Why MyTISM?
	The Solstice Client: Your Workspace
	Core Features for Your Daily Work
	A Typical Workflow
	Other Useful Functions
	Help and Support
	Getting Started Tips

	Bienvenue dans MyTISM !
	Pourquoi MyTISM ?
	Le client Solstice : Votre espace de travail
	Fonctionnalités clés pour votre travail quotidien
	Un flux de travail typique
	Autres fonctions utiles
	Aide et Support
	Conseils pour démarrer

	Wëllkomm bei MyTISM!
	Firwat MyTISM?
	De Solstice-Client: Ären Aarbechtsberäich
	Kärfunktioune fir Är alldeeglech Aarbecht
	En typeschen Aarbechtsoflaf
	Aner nëtzlech Funktiounen
	Hëllef an Support
	Tipps fir unzefänken

